Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
In this paper the properties of linear cyclically compact operators in Banach modules over space L0(B) are given.
First Page
225
Last Page
231
References
1. Chilin V.I., Karimov J.A. Strictly homogeneous laterally complete modules. J. Phys. Conf. Ser., Vol. 697 (2016).
2. Chilin V.I. Karimov J.A. Criterion of cyclically compactness in finite-dimensional normed module. Uzbek Mathematical Journal, Issue 3, pp. 51–62 (2018). DOI: 10.29229/uzmj.2018-3-5
3. Chilin V.I., Karimov J.A. The Cyclical Compactness in Banach C∞(Q)-Modules. J Math Sci, Vol. 265, pp. 129–145 (2022). DOI: 10.1007/s10958-022-06050-0
4. Karimov J.A. Kaplansky-Hilbert modules over the algebra of measurable functions. Uzbek Math. Zh., No. 4, pp. 74–81 (2010). (in Russian)
5. Karimov J.A. Equivalence of norms in finite dimensional C∞(Q)-modules. Vestnik NUUz, No. 2/1, pp. 100–108 (2017). (in Russian)
6. Karimov J.A. Criterion of compactness of the sets in finite-dimensional Banach modules. New results of mathematics and their applications, Abstracts (2018).
7. Karimov J.A. Cyclically compact sets in Banach modules over algebra L0. Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences, Vol. 5, Iss. 4, pp. 269–273 (2022). DOI: 10.56017/2181-1318.1265
8. Kusraev A.G. Vector duality and its applications. Novosibirsk, Nauka, (1985). (in Russian)
9. Kusraev A.G. Dominated operators. Netherlands, Springer, (2000).
11. Sarimsakov T.A., Ayupov Sh.A., Khadjiev D., Chilin V.I. Ordered algebras. Tashkent, FAN (1983). (in Russian)
12. Schaefer H.H. Topological Vector Spaces. Macmillan (1967).
13. Vulikh B.Z. Introduction to the Theory of Partially Ordered Spaces. Groningen, Wolters-Noordhoff Sci. Publ. (1967).
Recommended Citation
Karimov, Jasurbek
(2023)
"Cyclically compact operators in Banach modules over L0(B),"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 6:
Iss.
4, Article 9.
DOI: https://doi.org/10.56017/2181-1318.1270