Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
In this note we prove that if a function u(x,y) is separately harmonic in a domain D × Vr = D × {y∈ℝ2:|y|<r, r>1} ⊂ ℝn × ℝ2 and for each fixed point x0 ∈ D the function u(x0,y) of variable y continues harmonically into the great circle {y∈ℝ2:|y|<R(x0), R(x0)>r}, then it continues harmonically into a domain {(x,y)∈ℝn×ℝ2:|y|<R*(x), x∈D} over a set of variables.
First Page
214
Last Page
224
References
1. Avanissian V. Cellule d’Harmonicite et Prolongement Analitique Complexe. Travaux en cours, Hermann, Paris (1985).
2. Gonchar A.A. On analytic continuation from the “edge of the wedge”. Annales Academire Scientiarum Fennicre Series A. I. Mathematica. Vol. 10, pp. 221-125 (1985).
3. Zakharyuta V.P. Separately analytic functions, generalized Hartogs theorems and holomorphy shells. Mat. Sat. Vol. 101, Issue 1, pp. 57-76 (1976).
4. Zahariuta V.P. Spaces of harmonic functions, in: Functional Analysis, Lecture Notes in Pure and Applied Math. Vol. New York, 150, pp. 497-522 (1994).
5. Sičiak J. Separately analytic functions and envelopes of holomorphy of some lowerdimensional subsets of ℂn. Ann. Pol. Math. Vol. 22, Issue 1, pp. 145-171 (1969).
6. Sičiak J. Asymptotic behaviour of harmonic polynomials bounded on a compact set. Ann. Pol. Math. Vol. 20, 267-278 (1968).
7. Sičiak J. Bernstein-Walsh type theorems for pluriharmonic functions, in: Potential Theory-Proceedings of the International Conference, Kouty, 13-20 August 1994, J. Král et al. (eds.), Walter de Gruyter, Berlin-New York, 147-166 (1996).
8. Sičiak J. Bernstein-Walsh Theorems for Elliptic Operators. Jagiellonian University (1997) (preprint).
9. Sadullaev A.S. Plurisubharmonic functions. Results of science and technology. Modern problems of mathematics. Fundamental directions. M.: VINITI, Vol. 8, 65-111 (1985).
10. Sadullaev A.S., Imomkulov S.A. Continuation of holomorphic and pluriharmonic functions with subtle singularities on parallel sections. Proceedings of the Mathematical Institute named after V.A. Steklova Vol. 53, 158-174 (2006).
11. Nguyen T.V., Zeriahi A. Une extension du theoreme de Hartogs sur les fonctions separement analytiques. Analyse Complexe Multivariables, Recents Developments, A. Meril (ed), Editel, Rene, pp. 183-194 (1991).
12. Zeriahi A. Bases communes dans certains espaces de functions harmoniques et functions sur certains ensemblesde ℂn. Ann. Fac. Sci. Toulouse Nouvelle. Vol. 4, Issue 5, pp. 75-102 (1982).
13. Pflug P., Nguyen V.A. A boundary cross theorem for separately holomorphic functions. Ann. Polon. Math. Vol. 84, pp. 237-271 (2004).
14. Lelong P. Fonctions plurisousharmoniques et fonctions analytiques de variables reelles. Ann. Inst. Fourier. Vol. 11, pp. 515-562 (1961).
15. Hecart J. On Zahariutas extremal functions for harmonic functions. Vietnam. J. Math. Vol. 27, Issue 1, pp. 53-59 (1999).
16. Hecart J. Harmonicity domains far Separately harmonic functions. Potential. Anal. Vol. 13, pp. 115-126 (2000).
17. Van N.T., Djebbar B. Propriétés asymptotiques d’une suite orthonormale de polynômes harmoniques. Bull. Soc. Math. Issue 113, pp. 239-251 (1989).
18. Shabat B.V. Introduction to complex analysis. Part I. Functions of one variable. Moscow “Science” (1985).
Recommended Citation
Imomkulov, Sevdiyor and Abdikadirov, Sultanbay
(2023)
"An analogue of Hartogs lemma for separately harmonic functions with variable radius of harmonicity,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 6:
Iss.
4, Article 5.
DOI: https://doi.org/10.56017/2181-1318.1262