Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
In this paper we introduce the notion laterally complete regular modules and study some properties of theese modules.
First Page
60
Last Page
69
References
"
1. Chilin V.I. Partially ordered Baire’s involutive algebras. Modern problems of Mathematics: The latest trends, VINITI, Moscow, Vol. 27, pp. 99–128 (1985). (in Russian)
2. Chilin V.I., Karimov J.A. Laterally complete C∞(Q)-modules. Vladikavkaz math J., Vol. 16, No. 2, pp. 69–78 (2014). (in Russian)
3. Clifford A.N., Preston G.B. The algebraic theory of semigroup. Amer. Math. Soc., Mathematical Surveys, Number 7, Vol. I (1964).
4. Kaplansky J. Projections in Banach algebras. Ann. Math, Vol. 53, pp. 235–249 (1951).
5. Kaplansky J. Algebras of type I. Ann. Math, Vol. 56, pp. 450–472 (1952).
6. Kaplansky J. Modules over operator algebras. Amer. J. Math, Vol. 75, Issue 4, pp. 839–858 (1953).
7. Karimov J.A. Kaplansky-Hilbert modules over the algebra of measurable func- tions. Uzbek math. J., No. 4, pp. 74–81 (2010). (in Russian)
8. Kusraev A.G. Vector duality and its applications. Nauka, Novosibirsk (1985). (in Russian)
9. Kusraev A.G. Dominated operators. Springer, Netherlands (2000).
10. Maeda F. Kontinuierliche Geometrien. Berlin (1958).
11. Muratov M.A., Chilin V.I. Algebra of measurable and locally measurbale opera- tors. Proceedings of Mathematics institute of NAS Ukraine, Vol. 69, (2007). (in Russian)
12. Skornyakov L.A. Dedekind’s lattices with complements and regular rings. Fiz- matgiz, Moscow (1961). (in Russian)
13. Van Der Waerden B.L. Algebra. Volueme II. Springer-Verlag New York (1991).
14. Vulikh B.Z. Introduction to the theory of partially ordered spaces. Wolters-Noordhoff Sci. Publ., Groningen (1967).
"
Recommended Citation
Karimov, Jasurbek
(2023)
"Laterally complete regular modules,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 6:
Iss.
1, Article 6.
DOI: https://doi.org/10.56017/2181-1318.1271