Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
In this paper, we show that the negative-order Korteweg-de Vries equation with a self-consistent source can be solved by the inverse scattering method. The evolution of the spectral data of the Sturm-Liouville operator with the potential associated with the solution of the negative order Korteweg-de Vries equation with a self-consistent source is determined. The results obtained make it possible to apply the method of the inverse scattering problem to solve the problem under consideration.
First Page
50
Last Page
59
References
1. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M. Method for Solving the Korteweg de Vries Equation. Physical Review Letters. Vol. 19, pp. 1095-1097 (1967). http://dx.doi.org/10.1103/PhysRevLett.19.1095.
2. Lax P.D. Integrals of Nonlinear Equations of Evolution and Solitary Waves. Communications on Pure and Applied Mathematics. Vol. 21, pp. 467-490 (1968). https://doi.org/10.1002/cpa.3160210503.
3. Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Physical Review Letters. Vol. 27, pp. 1192 (1971). https://doi.org/10.1103/PhysRevLett.27.1192.
4. Ablowitz M.J. and Clarkson P.A. Solitons. Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series. Vol. 149, Cambridge University Press, Cambridge (1991). http://dx.doi.org/10.1017/cbo9780511623998
5. Kappeler T. and Pöschel J. On the periodic KdV equation in weighted Sobolev spaces. Annales de l’I.H.P. Analyse non linéaire. Vol. 26, pp. 841-853 (2009). http://eudml.org/doc/78869.
6. Belokolos E., Bobenko A., Enolskij V., Its A. and Matveev V.B. Algebro-Geometrical Approach to Nonlinear Integrable Equations. Springer, Berlin (1994).
7. Cherednik I.V. Basic Methods of Soliton Theory. World Scientific, Singapore (1996).
8. Gesztesy F. and Holden H. Soliton Equations and Their Algebro-Geometric Solutions. Cambridge University Press, New York (2003).
9. Verosky J.M. Negative powers of Olver recursion operators. J. Math. Phys. Vol. 32, 1733-1736 (1991). https://doi.org/10.1063/1.529234.
10. Lou S.Y. Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations. J. Math. Phys. Vol. 35, 2390-2396 (1994). http://dx.doi.org/10.1063/1.530509.
11. Qiao Z.J. and Li J.B. Negative-order KdV equation with both solitons and kink wave solutions. Euro. phys. Lett. Vol. 94, 50003 (2011). https://doi: 10.1209/0295-5075/94/50003.
12. Qiao Z.J. and Fan E.G. Negative-order Korteweg–de Vries equations. Phys. Rev. E. Vol. 86 (2012). https:// doi:10.1103/PhysRevE.86.016601
13. Rodriguez M., Li J., Qiao Z. Negative order KdV equation with no solitary traveling waves. Mathematics. Vol. 10, 48 (2022). https://doi.org/10.3390/math10010048
14. Urazboev G.U., Baltaeva I.I., Ismoilov O.B. Integration of the negative order Korteweg–de Vries equation by the inverse scattering method. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki. Vol. 33, No. 3, 523–533 (2023). DOI: https://doi.org/10.35634/vm230309
15. Leon J. and Latifi A. Solution of an initial-boundary value problem for coupled nonlinear waves. Journal of Physics, A: Mathematical and General. Vol. 23, pp 1385 (1990). https://dx.doi.org/10.1088/0305-4470/23/8/013
16. Mel’nikov V.K. A method for integrating the Korteweg-de Vries equation with a self-consistent source. Preprint no. 2-88-11/798. Dubna, Joint Institute for Nuclear Research (1988). https://s3.cern.ch/inspire-prod-files-d/d3b9e5b61499cfe7675c6be753aeca7c.
17. Mel’nikov V.K. Commun. Math. Phys. 126, 201 (1989).
18. Mel’nikov V.K. Inverse Problem. 6, 233 (1990).
19. Khasanov A.B., Urazboev G.U. Integration of the sine-Gordon equation with a self-consistent source of the integral type in the case of multiple eigenvalues. Izv. Vyssh. Uchebn. Zaved. Mat. Vol. 53, Issue 3, pp. 45–55 (2009). https://doi.org/10.3103/S1066369X09030037
20. Urazboev G.U., Hasanov M.M. Integration of the negative order Korteweg–de Vries equation with a self-consistent source in the class of periodic functions. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki. Vol. 32, pp. 228–239 (2022).
21. Urazboev G.U., Baltaeva I.I. Integration of Camassa-Holm equation with a selfconsistent source of integral type. Ufa Mathematical Journal. Vol. 14, No. 1, pp. 77-86 (2022). https://doi.org/10.13108/2022-14-1-77
22. Feckan M., Urazboev G., Baltaeva I. Inverse scattering and loaded Modified Korteweg-de Vries equation. Journal of Siberian Federal University. Mathematics and Physics. Vol. 15, pp. 176–185 (2022). http://dx.doi.org/10.17516/1997-1397-2022-15-2-176-185
23. Urazboev G.U., Khasanov M.M., Baltaeva I.I. Integration of the Negative Order Korteweg-de Vries Equation with a Special Source. The Bulletin of Irkutsk State University. Series Mathematics. Vol. 44, pp. 31–43 (2023). (in Russian) https://doi.org/10.26516/1997-7670.2023.44.31
Recommended Citation
Fečkan, Michal; Urazboev, Gayrat; Baltaeva, Iroda; and Ismoilov, Oxunjon
(2023)
"Integration of the negative order Korteweg-de Vries equation with self-consistent source,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 6:
Iss.
1, Article 5.
DOI: https://doi.org/10.56017/2181-1318.1240