Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
The paper considers an unbounded realization of a polydisk and a unit ball: the group of holomorphic automorphisms is described, and the Cauchy-Szego and Poisson kernels are calculated explicitly.
First Page
28
Last Page
39
References
1. Rudin W. Function theory in polydiscs. Moscow, Mir (1974).
2. Rudin W. Function theory in the unit ball of Cn. Moscow, Mir (1984).
3. Myslivec S.G. Morera's boundary theorem on the Poincaré sphere. Complex Analysis and Differential Operators. Sat. scientific works. Krasnoyarsk, KrasGU, pp. 97-102 (2000).
4. Stein E.M. Boundary behavior of holomorphic functions of several complex variables. Princeton Univ. Press. (1972).
5. Khudayberganov G., Kurbanov B.T. On one realization of the classical domain of the first type. Uzbek. Mat. J. No. 1, pp. 126-129 (2014).
6. Siegel K. Automorphic functions of several complex variables. Moscow (1954).
7. Vladimirov B.S., Sergeyev A.G. Kompleksnyy analiz v trube budushchego. Sovremennyye problemy matematiki. Fundamental'nyye napravleniya. Moscov, VINITI. T. 8, pp. 191-266 (1985).
8. Vladimirov B.S. Obobshchennyye funktsii v matematicheskoy fizike. Moscow, Nauka (1979).
9. Shabat B.V. Vvedeniye v kompleksnyy analiz. Ch.2. Moscow, Nauka (1985).
10. Koranyi A. The Poisson integral for the generalized half planes and bounded symmetric domains. Ann. of Math. Vol. 82, No. 2, pp. 332-350 (1965).
11. Pyateskiy-Shapiro I.I. Geometriya klassicheskikh oblastey i teoriya avtomorfnykh funktsiy. Moscow, Nauka (1961).
Recommended Citation
Kurbanov, Bukharbay
(2023)
"On generalizations of the upper half plane in a multidimensional complex space,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 6:
Iss.
1, Article 3.
DOI: https://doi.org/10.56017/2181-1318.1237