•  
  •  
 

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

Abstract

In this work we investigated an initial boundary value problem for the heat equation on a metric star graph in Sobolev space. The existence and uniqueness of the generalized solution are proved with the classical functional method based on a priori estimates. Also, we considered the inverse source problem with the integral over-determination condition. We reduced the inverse problem to the operator-based equation and proved that the corresponding resolvent operator is well-defined.

First Page

1

Last Page

15

References

1. Berkolaiko G., Kuchment P. Introduction to quantum graphs. Mathematical surveys and monographs, AMS, Vol.186, (2013).

2. Kurasov P. Graph Laplacians and topology. Ark. Mat. 46, pp. 95–111 (2008). /doi: 10.1007/s11512-007-0059-4.

3. Leugering G. On the semi-discretization of optimal control problems for networks of elastic strings: global optimality systems and domain decomposition. J. Comput. Appl. Math. 120, pp. 133–157 (2000).

4. Ali G., Bartel A. and Günther M. Parabolic differential-algebraic models in electrical network design. Multiscale Model. Simul. 4, pp. 813-838 (2005). doi: 10.1137/040610696.

5. Avdonin S. Control, observation and identification problems for the wave equation on metric graphs. IFAC-PapersOnLine, pp. 52-57 (2019). doi: 10.1016/j.ifacol.2019.08.010.

6. Sobirov Z.A., Akhmedov M.I., Karpova O.V., Jabbarova B. Linearized KdV equation on a metric graph. Nanosystems: Physics, Chemistry, Mathematics, No. 6, 757–761 (2015).

7. Exner P., Post O. Approximation of quantum graph vertex couplings by scaled Schrodinger operators on thin branched manifolds. J. Phys. A: Math. Theor., 42, 415305 22 p. (2009). doi:10.1088/1751-8113/42/41/415305.

8. Alkhutov Yu., Mamedov I. The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients. Mathematics of the USSR-Sbornik. Vol. 59, 2, pp. 471–495 (1988).

9. Hacene Mecheri, Maryam G. Alshehri. A priori estimate for resolving the boundary fractional problem. AIMS Mathematics, 8(1), pp. 765-774 (2022).

10. Taki-Eddine Oussaeif, Abdelfatah Bouziani. Inverse problem of a hyperbolic equation with an integral overdetermination condition. Electronic Journal of Differential Equations. No 138, pp. 1-7 (2016).

11. Alikhanov A.A. A priori estimate for solutions of boundary value problems for fractional-order equations. Differential equations. Vol. 46, Issue 5, pp. 660–666 (2010).

12. Leugering G., Mophou G., Moutamal M., and Warma M. Optimal control problems of parabolic fractional Sturm-Lioville equations in a star graph. Mathematical Control and Related Fields, In press. hal-03592801, Vol. 13, 2 (2022). doi:10.3934/mcrf.2022015

13. Mehandiratta V., Mehra M., Leugering G. Existence and uniqueness of time-fractional diffusion equation on a metric star graph. Communications in Computer and Information Science book series. Vol. 1345, pp. 25-41 (2021).

14. Ashurov R., Mukhiddinova A. Inverse problem of determining the heat source density for the subdiffusion equation. Differential Equations. Vol. 56, 12, pp. 1550-1563 (2020).

15. Alimov Sh., Ashurov R. Inverse problem of determining an order of the Riemann-Liouville time-fractional derivative. Progress in Fractional Differentiation and Applications, An International Journal, No. 4, 467-474 (2022).

16. Ashurov R., Umarov S. An inverse problem of determining orders of systems of fractional pseudo-differential equations. Fractional Calculus and Applied Analysis, 25, pp. 109–127 (2022).

17. Ashurov R., Shakarova M. Time-dependent source identification problem for fractional Schrodinger type equations. Lobachevskii Journal of Mathematics. Vol. 43, No. 2, pp. 303–315 (2022).

18. Kurasov P., Nowaczyk M. Inverse spectral problem for quantum graphs. Journal of Physics A: Mathematical and general. Vol. 38, pp. 4901–4915 (2005). /doi:10.1088/0305-4470/38/22/014.

19. Avdonin S., Mikhaylov V. Controllability of partial differential equations on graphs, Applicationes Mathematicae Vol. 35, 4, pp. 379–393 (2008).

20. Avdonin S. and Kurasov P. Inverse problems for quantum trees. Inverse Probl. Imaging. Vol. 2, pp. 1-21 (2008). doi: 10.3934/ipi.2008.2.1.

21. Avdonin S., Leugering G., Mikhaylov V. On an inverse problem for tree-like networks of elastic strings, ZAMM Z. Angew. Math. Mech. Vol. 90, No. 2, pp. 136–150 (2010). / doi 10.1002/zamm.200900295.

22. Avdonin S., Edward J. An inverse problem for quantum trees with observations at interior vertices. Networks and Heterogeneous Media. Vol. 16, No. 2, pp. 317-339 (2021). doi: 10.3934/nhm.2021008.

23. Al-Musallam F., Avdonin S.A., Avdonina N. and Edward J. Control and inverse problems for networks of vibrating strings with attached masses. Nanosystems: Physics, Chemistry, and Mathematics. Vol. 7, 835-841 (2016). doi: 10.17586/2220-8054-2016-7-5-835-841.

24. Yurko V.A. Uniqueness of the solution of the inverse problem for differential operators on arbitrary compact graphs. Izd. Sarat. university. nov. ser. Ser. Mathematics. Mechanics. Computer science. Vol. 3 (2010).

25. Kamiynin V.L. On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination condition. Mathematical Notes. Vol. 77, No. 4, pp. 482–493 (2005).

26. Kamiynin V.L. On the solvability of the inverse problem for determining the right-hand side of a degenerate parabolic equation with integral observation. Mathematical Notes. Vol. 98, No. 5, pp. 765-777 (2015).

27. Prilepko A., Tkachenko D. Inverse problem for a parabolic equation with integral overdetermination. J. Inv. Ill-Posed Problems. Vol. 11, No. 2, pp. 191-218 (2003).

28. Chang Y.K., Ponce R., Rueda S. Fractional differential equations of Sobolev type with sectorial operators. Springer Science+Business Media, LLC, part of Springer Nature. No 99, pp. 591-606 (2019). https://doi.org/10.1007/s00233-019-10038-9.

29. Kinnunen J. Sobolev spaces. Department of Mathematics, Aalto University (2023).

30. Ladyzhenskaya O.A. Kraevye zadachi matematicheskoi fiziki. Nauka, Moscow (1973).

31. Volkova A.S. The generelized solution of the boundary value problems for heat equation on graphs. Vestnik Sankt-Piterbukgskogo Universiteta. Series 10, Vol. 3, pp. 39-47 (2013). (in Russian).

Included in

Analysis Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.