Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
We consider fractal squares and obtain the conditions under which they possess finite intersection property. If the fractal square is a dendrite we find the exact estimates for the intersection number for pairs of their pieces and the orders of their points.
First Page
164
Last Page
181
References
1. Bandt, C. and Keller, K. Self-Similar Sets 2. A Simple Approach to the Topological Structure of Fractals Mathematische Nachrichten 154, 1(1991), 27–39.
2. Bedford, T. Crinkly curves, Markov partitions and dimension. PhD thesis, University of Warwick, 1984.
3. Charatonik, J. J. and Charatonik, W. J. Dendrites. Aportaciones Mat. Comun 22 (1998), 227–253.
4. Cristea, L. L. and Leobacher, G. Supermixed labyrinth fractals. Geometriae Dedicata 141, 1 (2009), 1–17.
5. Cristea, L. L. and Steinsky, B. Curves of infinite length in 4×4-labyrinth fractals. Geometriae Dedicata 141, 1 (2009), 1–17.
6. Cristea, L. L. and Steinsky, B. Curves of infinite length in labyrinth fractals. Proceedings of the Edinburgh Mathematical Society 54, 2 (2011), 329–344.
7. Cristea, L. L. and Steinsky, B. Mixed labyrinth fractals. Topology and its Applications 229 (2017), 112–125.
8. Elekes, M., Keleti, T. and Máthé, A. Self-similar and self-affine sets: measure of the intersection of two copies. Ergodic Theory and Dynamical Systems 30, 2 (2010), 399–440.
9. Fraser, J. M. Fractal Geometry of Bedford-McMullen Carpets. In Thermodynamic Formalism (Cham, 2021), M. Pollicott and S. Vaienti, Eds., Springer International Publishing, pp. 495–516.
10. Hata, Masayoshi On the structure of self-similar sets. Japan Journal of Applied Mathematics 2 (1985), 381–414.
11. Kigami, J. Analysis on fractals. No. 143. Cambridge University Press, 2001.
12. Kuratowski, K. Topology: Volume II, vol. 2. Elsevier, 2014.
13. Lau, K.-S., Luo, J. J. and Rao, H. Topological structure of fractal squares. Mathematical Proceedings of the Cambridge Philosophical Society 155, 1 (2013), 73–86.
14. Mauldin, R. D., and Williams, S. C. Hausdorff dimension in graph directed constructions. Transactions of the American Mathematical Society 309, 2 (1988), 811–829.
15. McMullen, C. The Hausdorff dimension of general Sierpiński carpets. Nagoya Mathematical Journal 96 (1984), 1–9.
16. Olsen, L. Self-affine multifractal Sierpiński sponges in Rd. Pacific Journal of Mathematics 183, 1 (1998), 143–199.
17. Peres, Y. The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure. Mathematical Proceedings of the Cambridge Philosophical Society 116, 3 (1994), 513–526.
18. Samuel, M., Tetenov, A., and Vaulin, D. D. Self-similar dendrites generated by polygonal systems in the plane. Siberian Electronic Math Reports 14, (2017), 737–751.
19. Tetenov, A. Finiteness properties for self-similar continua. arXiv:2003.04202[math.MG] (2020).
20. Xiao, J.-C. Fractal squares with finitely many connected components. Nonlinearity 34, 4 (2021), 1817–1836.
Recommended Citation
Drozdov, Dmitriy and Tetenov, Andrei
(2022)
"On fractal squares possessing finite intersection property,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 5:
Iss.
3, Article 4.
DOI: https://doi.org/10.56017/2181-1318.1229