Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences


This article is devoted to the definition and study of strongly m-subharmonic (shm) functions on complex manifolds. A definition of strongly m-subharmonic functions on a Stein manifold is introduced and some basic properties are proven.

First Page


Last Page



1. Ahag P., Rafal C., Lisa H. Extension and approximation of m-subharmonic functions. Complex Variables and Elliptic Equations, 6, 1242-1244 (1966).

2. Bedford E., Taylor B.A. The Dirichlet problem for a complex Monge -Ampère equation. Inventiones math., 37, 1-44 (1976).

3. Blocki Z. Weak solutions to the complex Hessian equation. Ann.Inst.Fourier, Grenoble, 5, No. 55, 1735-1756 (2005).

4. Dinew S., Kolodziej S. A priori estimates for complex Hessian equations. Analysis and PDE, 1, No. 7, 227-244 (2014).

5. Li S.Y. On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. Asian J. Math, 1, No. 8, 87-106 (2004).

6. Lu H. A variational Approach to complex Hessian equations in Cn. Journal of Mathematical Analysis and Applications, 1, No. 431, 228-259 (2015).

7. Poletsky E.A., Sigurdsson R. Dirichlet problems for plurisubharmonic functions on compact sets. Math. Zeitschrift., 3-4, No. 271, 877-892 (2012).

8. Sadullaev A., Abdullaev B. Potential theory in the class of m-subharmonic functions. Trudy Mat. Inst. Steklova, 279, 166-192 (2012). (in Russian)

9. Siciak J. Extreme plurisubharmonic functions in Cn. Dokl. Annales Polonici Mathematici, 1, No. 39, 175-211 (1966).

10. Abdullaev B.I., Imomkulov S.A., Sharipov R.A. α-subharmonic functions. Contemporary mathematics. Fundamental directions (2021).

11. Abdullaev B.I., Sharipov R.A. Locally and globally α-polar sets. Bulletin of the Institute of Mathematics, No. 5, 4-8 (2021).

12. Garnett J. Bounded Analytic Functions. Springer Science & Business Media (2006).

13. Kolmogorov A.N., Fomin S.V. Elements of the Theory of Functions and Functional Analysis. Graylock Press Rochester, N.Y. (1957).

14. Sadullaev A. Pluripotential theory. Applications. Saarbrucken, Deutschland (2012).

15. Sadullaev A. Approximation of the shm-function on a Stein manifold, Preprint (2023).

16. Hörmander L. An Introduction to Complex Analysis in Several Variables. North Holland (1990).

Included in

Analysis Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.