Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
This article is devoted to the definition and study of strongly m-subharmonic (shm) functions on complex manifolds. A definition of strongly m-subharmonic functions on a Stein manifold is introduced and some basic properties are proven.
First Page
91
Last Page
100
References
1. Ahag P., Rafal C., Lisa H. Extension and approximation of m-subharmonic functions. Complex Variables and Elliptic Equations, 6, 1242-1244 (1966).
2. Bedford E., Taylor B.A. The Dirichlet problem for a complex Monge -Ampère equation. Inventiones math., 37, 1-44 (1976).
3. Blocki Z. Weak solutions to the complex Hessian equation. Ann.Inst.Fourier, Grenoble, 5, No. 55, 1735-1756 (2005).
4. Dinew S., Kolodziej S. A priori estimates for complex Hessian equations. Analysis and PDE, 1, No. 7, 227-244 (2014).
5. Li S.Y. On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. Asian J. Math, 1, No. 8, 87-106 (2004).
6. Lu H. A variational Approach to complex Hessian equations in Cn. Journal of Mathematical Analysis and Applications, 1, No. 431, 228-259 (2015).
7. Poletsky E.A., Sigurdsson R. Dirichlet problems for plurisubharmonic functions on compact sets. Math. Zeitschrift., 3-4, No. 271, 877-892 (2012).
8. Sadullaev A., Abdullaev B. Potential theory in the class of m-subharmonic functions. Trudy Mat. Inst. Steklova, 279, 166-192 (2012). (in Russian)
9. Siciak J. Extreme plurisubharmonic functions in Cn. Dokl. Annales Polonici Mathematici, 1, No. 39, 175-211 (1966).
10. Abdullaev B.I., Imomkulov S.A., Sharipov R.A. α-subharmonic functions. Contemporary mathematics. Fundamental directions (2021).
11. Abdullaev B.I., Sharipov R.A. Locally and globally α-polar sets. Bulletin of the Institute of Mathematics, No. 5, 4-8 (2021).
12. Garnett J. Bounded Analytic Functions. Springer Science & Business Media (2006).
13. Kolmogorov A.N., Fomin S.V. Elements of the Theory of Functions and Functional Analysis. Graylock Press Rochester, N.Y. (1957).
14. Sadullaev A. Pluripotential theory. Applications. Saarbrucken, Deutschland (2012).
15. Sadullaev A. Approximation of the shm-function on a Stein manifold, Preprint (2023).
16. Hörmander L. An Introduction to Complex Analysis in Several Variables. North Holland (1990).
Recommended Citation
Kurbonboyev, Sukrotbek
(2022)
"Strongly m-subharmonic functions on complex manifolds,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 5:
Iss.
2, Article 4.
DOI: https://doi.org/10.56017/2181-1318.1219