Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
We consider A(z)-analytic functions in case when A(z) is antiholomorphic function. For A(z)-analytic functions analog of the Mittag-Leffler theorem is proved.
First Page
67
Last Page
78
References
1. Ahlfors L. Lectures on quasiconformal mappings. Toronto-New York-London, Vol. 133 (1966).
2. Bojarski B. Homeomorphic solutions of Beltrami systems. Reports of the Academy of Sciences of the USSR, Vol. 102, Issue 4, 661-664 (1955).
3. Bers L. An outline of the theory of pseudoanalytic functions. Bull AMS, Vol. 62, Issue 4, 291-331 (1956).
4. Bukhgeim A.L. Inversion formulas in inverse problems. Supplement to the book Lavrentiev M.M., Savelyev L.Ya. Linear operators and ill-posed problems. Moscow, "Science" (1991).
5. Vekua I.N. Generalized analytic functions. Moscow, "Nauka", 512 p. (1988).
6. Volkovysky L.I. Quasiconformal mappings. Lvov (1954).
7. Gutlyanski V., Ryazanov V., Srebro U., Yakubov E. The Beltrami equation: a geometric approach. Springer (2011).
8. Collingwood E.F., Lohwater A.J. The theory of cluster sets. Camridge Tracts in Mathematics and Mathematical physics, Vol. 56, 312 (1996).
9. Tishabaev J.K., Otaboyev T.U., Khursanov Sh.Ya. Residues and argument prinsple for A-analytic functions. Journal of Mathematical Sciences, Vol. 245, Issue 3, 350-358 (2020).
10. Titchmarsh E.C. The theory of functions. Moscow, Nauka (1980) (in Russian).
11. Koosis P. Introduction to HpSpaces. Cambidge University, London MathSosiety Lecture Note Series, Vol. 40, 364 (1960).
12. Khursanov S.Y. Geometric properties of A-harmonic functions. Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences, Vol. 3, 236-245 (2020).
13. Jabborov N.M., Otaboev T.U. An analogue of the Cauchy integral formula for A-analytic functions. Uzbek Mathematical Journal, Vol. 2, Issue 4, 50-59 (2016).
14. Jabborov N.M., Otaboev T.U., Khursanov Sh.Ya. Schwartz inequality and Schwartz formula for analytic functions. Modern Mathematics. Fundamental Directions, Vol. 64, Issue 4, 637-649 (2018).
15. Sadullaev A., Jabborov N.M. On a class of A-analytic functions. Journal of Siberian Federal University, Mathematics and Physics, Vol. 9, Issue 3, 374-383 (2016).
16. Shabat B.V. Introduction to complex analysis: Part 1. Moscow, Nauka, Vol. 336 (1985).
17. Privalov I.I. Boundary properties of analytic functions. Moscow (1959).
18. Natanson I.P. Theory of functions of a real variable. New York. Frederick Ungar Publishing Co. (1964).
19. Ne'matillayeva M.D. Gurvitz's theorem for A-analytic functions. Tashkent University of Information Technologies scientific-practical and information-analytical journal, Vol. 1, Issue 19, 145-151 (2022).
20. Nematillaeva M.D., Khursanov Sh.Ya. The generalized argument principle for A(z)-analytic function. Doklady academy of sciences of the Republic of Uzbekistan (DAN), Vol. 3, 22-26 (2022).
21. Ne'matillaeva M.D. Theorem Mittag-Leffler for A(z)-analytical functions. International scientific conference on modern problems of applied mathematics and information technologies, May 11-12, Bukhara, Uzbekistan, 69-70 (2022).
22. Ne'matillayeva M.D. Theorem Veyershtrass for A(z)-analytical functions. Abstracts of the Uzbekistan-Malaysia international conference Computational models and technologies, September 16-17, 133-134 (2022).
23. Ne'matillaeva M.D. Blyashke's Analog Theorem for A(z)-Analytical Functions. Actual questions of algebra and analysis - Republican scientific-practical conference, November 18-19, 283-284 (2022).
Recommended Citation
Ne'matillayeva, Muhayyo
(2022)
"Analogue of the Mittag-Leffler theorem for A(z)-analytic functions,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 5:
Iss.
2, Article 2.
DOI: https://doi.org/10.56017/2181-1318.1217