•  
  •  
 

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

Abstract

Analytical expressions for the linear and nonlinear optical susceptibilities of spherical quantum dots are obtained using the Schrödinger equation. To solve the Schrödinger equation, the Nikiforov-Uvarov method was used, assuming that electrons isolated in the medium are associated with the Gelman inverse quadratic potential. Using the density matrix formalism, analytical expressions were obtained for the coefficients of linear and nonlinear absorption and changes in the refractive index of quantum dots. Elements of the matrix of the electric dipole moment l=± 1 and m = 0 are obtained according to the selection rules. To demonstrate the results obtained, we used the real physical characteristics of quantum dots obtained from gallium arsenide (GaAs).

First Page

44

Last Page

55

References

1. Li X., Rui M., Song J., Shen Z., Zeng H. Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Advanced Functional Materials, 25(31), 4929-4947 (2015).

2. Molaei M.J. Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Analytical Methods, 12(10), 1266-1287 (2020).

3. Robert W. Boyd Nonlinear Optics, Third Edition. Ottawa, ON, Canada Rochester, NY, United States, Chapter 3, 149 pages (2020).

4. Choubani M., Maaref H., Saidi F. Nonlinear optical properties of lens-shaped core/shell quantum dots coupled with a wetting layer: effects of transverse electric field, pressure, and temperature. Journal of Physics and Chemistry of Solids, 138, 109226 (2020).

5. Mantashian G.A., Zaqaryan N.A., Mantashyan P.A., Sarkisyan H.A., Baskoutas S., Hayrapetyan D.B. Linear and Nonlinear Optical Absorption of CdSe/CdS Core/Shell Quantum Dots in the Presence of Donor Impurity. Atoms 9, 75 (2021).

6. Ita B.I., Ikeuba A.I. Solutions to the Schrödinger equation with inversely quadratic Yukawa plus inversely quadratic Hellmann potential using Nikiforov-Uvarov method. J. At. Mol. Phys. (2013).

7. Ita B.I., Ehi-Eromosele C.O., Edobor-Osoh A., Ikeuba A.I. Solutions of the Schrödinger equation with inversely quadratic Hellmann plus inversely quadratic potential using Nikiforov-Uvarov method. AIP Conf. Proc. 1629, 360–362 (2014).

8. Xie W. Optical properties of an off-center hydrogenic impurity in a spherical quantum dot with Gaussian potential. Superlattices Microstruct, 48, 239–247 (2010).

9. Gharaati A., Khordad R. A new confinement potential in spherical quantum dots: modified Gaussian potential. Superlattices Microstruct, 48, 276–287 (2010).

10. Khordad R. Confinement of an exciton in a quantum dot: effect of modified Kratzer potential. Indian J. Phys., 87, 623–628 (2013).

11. Onyeaju M.C., Idiodi J.O.A., Ikot A.N., Solaimani M., Hassanabadi H. Linear and nonlinear optical properties in spherical quantum dots: generalized Hulthén potential. Few-Body Systems, 57(9), 793-805 (2016).

12. Karimi M.J., Rezaei G., Nazari M. Linear and nonlinear optical properties of multilayered spherical quantum dots: effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature. Journal of luminescence, 145, 55-60 (2014).

13. Yakar Y., Cakir B., Özmen A. Linear and nonlinear optical properties in spherical quantum dots. Communications in Theoretical Physics, 53(6), 1185 (2010).

14. Karabulut İ., Baskoutas S. Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity. Journal of Applied Physics, 103(7), 073512 (2008).

15. Mathe L., Onyenegecha C.P., Farcaş A.A., Pioraş-Ţimbolmaş L.M., Solaimani M., Hassanabadi H. Linear and nonlinear optical properties in spherical quantum dots: Inversely quadratic Hellmann potential. Physics Letters A, 397, 127262 (2021).

16. Khordad R., Mirhosseini B. Linear and nonlinear optical properties in spherical quantum dots: Rosen-Morse potential. Optics and Spectroscopy, 117(3), 434-440 (2014).

17. Shi L., Yan Z.W. Polaronic effect on linear and nonlinear optical properties of spherical quantum dots under electric field. Solid State Communications, 209, 27-32 (2015).

18. Zeng Z., Garoufalis C.S., Terzis A.F., Baskoutas S. Linear and nonlinear optical properties of ZnO/ZnS and ZnS/ZnO core shell quantum dots: Effects of shell thicQDess, impurity, and dielectric environment. Journal of Applied Physics, 114(2), 023510 (2013).

19. Khordad R. Effect of position-dependent effective mass on linear and nonlinear optical properties in a quantum dot. Indian Journal of Physics, 86(6), 513-519 (2012).

20. Aghoutane N., El-Yadri M., El Aouami A., Feddi E., Long G., Sadoqi M., ... Phuc H.V. Excitonic nonlinear optical properties in AlN/GaN spherical core/shell quantum dots under pressure. MRS Communications, 9(2), 663-669 (2019).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.