Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences


This paper work is devoted to the study of the Dirichlet problem in the class of A(z)-harmonic functions.

First Page


Last Page



1. Ahlfors L. Lectures on quasiconformal mappings. Toronto-New York-London, (1966).

2. Bukhheim A.L., Kazantsev S.G. Beltrami-type elliptic systems and tomography problems. Report. USSR Academy of Sciences. T.315, No.1, 15-19 (1990).

3. Keldysh M.V. On the solvability and stability of the Dirichlet problem. Uspekhi Mat. Nauk. 8, pp. 171-231 (1941).

4. Khursanov Sh.Y. A(z)-harmonic function. VESTNIK NUUz. 2/2, 5–8 (2017).

5. Khursanov Sh.Y. Geometric properties of A-harmonic functions. Bullitin of NUUz: Mathematics and Natural Sciences. Vol.3, Issue 2, pp. 236–245 (2020).

6. Khursanov Sh.Y. Some properties of A(z)-subharmonic functions. Bullitin of NUUz: Mathematics and Natural Sciences. Vol.3, Issue 4, pp. 474–484 (2020).

7. Perron O. Eine neue Behandlung der ersten Randwertaufgabe für. Math. Z. No.18, pp. 42–54 (1923).

8. Vekua I.N. Generalized analytical functions. M., Science, (1988).

9. Sadullaev A., Zhabborov N.M. On a class of A-analitic functions. Siberian Federal University. Maths and Physics. Vol. 9(3), pp. 374-383 (2016).

10. Zhabborov N.M., Otaboev T.U., Khursanov Sh.Ya. Schwartz Inequality and Schwartz Formula for A-analytical Functions. Contemporary Mathematics. Fundamental Directions. Vol.64, No.4, pp. 637-649 (2018).

Included in

Analysis Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.