Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
This paper work is devoted to the study of the Dirichlet problem in the class of A(z)-harmonic functions.
First Page
231
Last Page
244
References
1. Ahlfors L. Lectures on quasiconformal mappings. Toronto-New York-London, (1966).
2. Bukhheim A.L., Kazantsev S.G. Beltrami-type elliptic systems and tomography problems. Report. USSR Academy of Sciences. T.315, No.1, 15-19 (1990).
3. Keldysh M.V. On the solvability and stability of the Dirichlet problem. Uspekhi Mat. Nauk. 8, pp. 171-231 (1941).
4. Khursanov Sh.Y. A(z)-harmonic function. VESTNIK NUUz. 2/2, 5–8 (2017).
5. Khursanov Sh.Y. Geometric properties of A-harmonic functions. Bullitin of NUUz: Mathematics and Natural Sciences. Vol.3, Issue 2, pp. 236–245 (2020).
6. Khursanov Sh.Y. Some properties of A(z)-subharmonic functions. Bullitin of NUUz: Mathematics and Natural Sciences. Vol.3, Issue 4, pp. 474–484 (2020).
7. Perron O. Eine neue Behandlung der ersten Randwertaufgabe für. Math. Z. No.18, pp. 42–54 (1923).
8. Vekua I.N. Generalized analytical functions. M., Science, (1988).
9. Sadullaev A., Zhabborov N.M. On a class of A-analitic functions. Siberian Federal University. Maths and Physics. Vol. 9(3), pp. 374-383 (2016).
10. Zhabborov N.M., Otaboev T.U., Khursanov Sh.Ya. Schwartz Inequality and Schwartz Formula for A-analytical Functions. Contemporary Mathematics. Fundamental Directions. Vol.64, No.4, pp. 637-649 (2018).
Recommended Citation
Khursanov, Shohruh
(2021)
"Dirichlet problem in the class of A(z)-harmonic functions,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 4:
Iss.
4, Article 9.
DOI: https://doi.org/10.56017/2181-1318.1209