Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
We consider a class of quasi m-subharmonic functions in the projective space ℙn. Similarly to the m-subharmonic functions, we will show a number of potential properties of quasi m-subharmonic functions. We introduce the concepts of Green’s function Vqm*(z,K,ℙn), ��m-measure ωqm*(z,E,D) and study m-regularities of compact sets K ⊂ ℙn. In contrast to the complex space ℂn, we will prove that in the projective space ℙn the locally m-regularity of compact sets is equivalent to their global m-regularity.
First Page
210
Last Page
220
References
Harvey F. R. and Lawson H. B. Jr., An introduction to potential theory in calibrated geometry // Amer. J. Math. 131, 4.2009, pp.893-944.
Harvey F. R. and Lawson H. B. Jr., Plurisubharmonicity in a general geometric context // Geometry and Analysis 1, 2010, pp.363-401.
Harvey F. R. and Lawson H. B. Jr., Geometric plurisubharmonicity and convexity – an introduction // Advances in Mathematics 230, 2012, pp.2428-2456.
Blocki Z., Weak solutions to the complex Hessian equation. Ann.Inst.Fourier, Grenoble, 55, V.5, (2005), 1735-1756.
Dinev S., Kolodziej S., A priori estimates for the complex Hessian equation Anal. PDE, V.l7, (2014), 227 244.
Lu H.Ch., Solutions to degenerate Hessian equations // Jurnal de Mathematique Pures et Appliques. Volume 100, Issue 6, 2013, pp.785-805.
Sadullaev A., Abdullayev B., Potential theory in the class of m-subharmonic functions, Trudi of Moscow Steklov Institut of math., 2012, V..279, 166-192.
Sadullaev A., Pluripotential Theory. Applications. Monograph, Palmarium academic publishing, germany, Germany-2012, 307 p.
Abdullaev B.I., The Dirichlet problem in the class of m − wsh functions // Uzbek Mathematical Journal, 2012, , pp.3–10.
Abdullaev B.I., Sharipov R.A., m-Subharmonic functions in the entire space ℂn. Green functions // Uzbek Mathematical Journal, 2013, , pp.3–8.
Abdullayev B.I., Subharmonic functions on complex Hyperplanes of ℂn// Journal of Siberian Federal University, Mathematics and Physics, Krasnoyarsk, 2013 (4), pp.409-416.
Abdullayev B.I., ��-measure in the class of m − wsh functions // Journal of Siberian Federal University, Mathematics and Physics, 2014 (1), pp.3-9.
Sadullaev A. Pluriregular compacts in ℙn // Contemporary mathematics. AMS. – 2016. – Volume 662. – P. 145–156.
Alan M.A. Supports of weighted equilibrium measures and examples // Potential Analysis. – 2013. – Volume 38. – P. 457–470.
Alan M.A. Weighted regularity and two problems of Sadullaev on weighted regularity // Complex Analysis and its Synergies. Springer. – 2019. – Volume 5. – P. 1–7.
Bloom T., Levenberg N. Weighted pluripotential theory in ℂn // American Journal of Mathematics. – 2003. – Volume 125:1. – P. 57–103.
Narzillaev N. Kh. Delta-extremal functions in ℂn // Journal of Siberian Federal University. Mathematics & Physics. - 2021. – Volume 14, Issue 3. – P. 389–398. https://doi.org/10.17516/1997-1397-2021-14-3-389-398
Narzillaev N. Kh. Weighted (m,δ)-Green functions in ℂn // Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences. – 2021. – Volume 4, Issue 1. – P. 100–111.
Recommended Citation
Gogus, Gokhan and Sadullaev, Azimbay
(2021)
"m-subharmonic functions on the projective space Pn,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 4:
Iss.
4, Article 7.
DOI: https://doi.org/10.56017/2181-1318.1207