Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
Let H be an infinite-dimensional complex Hilbert space, let (B(H), ||.||∞ be the C⚹-algebra of all bounded linear operators acting in H, and let CE be the symmetric ideal of compact operators in H generated by the fully symmetric sequence space E ⊂ c0. If Tu: B(H)→ B(H), u=(u_1,...,u_d)∈ R+d, is a semigroup of positive Dunford-Schwartz operators, which is strongly continuous on C1, then the following versions of individual and mean ergodic theorems are true: For each y ∈ CE the net At(y) = 1/td ∫[0,t]d T u(y) du, t>0, converges to some ŷ ∈ CE with respect to the norm ||.||∞, as t → ∞; moreover, if E is separable \ and E ≠ l1 (as a sets), then At(y) converges to ŷ with respect to the norm ||.||CE.
First Page
44
Last Page
53
References
1. Azizov A., Chilin V. Ergodic theorems for flows in the ideals of compact operators. Taurida journal of computer science theory and mathematics, Vol. 4, (2020).
2. Chilin V., Litvinov S. Ergodic theorems in fully symmetric spaces of τ-measurable operators. Studia Math., Vol. 288, Issue 2, 177–195 (2015).
3. Chilin V., Litvinov S. Individual ergodic theorems in noncommutative Orlicz spaces. Positivity, Vol. 21, Issue 1, 49–59 (2017).
4. Conze J.P., Dang-Ngoc N. Ergodic theorems for noncommutative dynamical systems. Invent. Math., Vol. 46, 1–15 (1978).
5. Dodds P.G., Dodds T.K. and Pagter B. Fully symmetric operator spaces. J. Integr. Equat. Oper. Theory, Vol. 15, 942–972 (1992).
6. Dodds P.G., Dodds T.K. and Pagter B. Noncommutative K\"othe duality. Trans. Amer. Math. Soc., Vol. 339, Issue 2, 717–750 (1993).
7. Dodds P.G., Dodds T.K. and Sukochev F.A. Banach-Saks properties in symmetric spaces of measurable operators. Studia Math., Vol. 178, 125–166 (2007).
8. Dunford N. and Schwartz J. T. Linear Operators, Part I: General Theory. John Willey and Sons, (1988).
9. Fack T., Kosaki H. Generalized s-numbers of τ-measurable operators. Pacific. J. Math., Vol. 123, 269–300 (1986).
10. Gohberg I.C., Krein M.G. Introduction to the theory of linear nonselfadjoint operators. Translations of Mathematical Monographs, Vol. 18, Amer. Math. Soc., Providence, RI 02904, (1969).
11. Junge M., Xu Q. Noncommutative maximal ergodic theorems. J. Amer. Math. Soc., Vol. 20, Issue 2, 385–439 (2007).
12. Krein S.G., Petunin Ju.I., Semenov E.M. Interpolation of Linear Operators. Translations of Mathematical Monographs, Amer. Math. Soc., Vol. 54, (1982).
13. Lord S., Sukochev F., Zanin D. Singular Traces. Walter de Gruyter GmbH, Berlin/Boston, (2013).
14. Rubshtein B. A., Grabarnik G.Ya., Muratov M.A. and Pashkova Yu.S. Foundations of Symmetric Spaces of Measurable Functions. Lorentz, Marcinkiewicz and Orlicz Spaces. Springer International Publishing, Switzerland, (2016).
15. Watanabe S. Ergodic theorems for dynamical semi-groups on operator algebras. Hokkaido Math. J., Vol. 8, 176–190 (1979).
16. Yeadon F.J. Ergodic theorems for semifinite von Neumann algebras. I. J. London Math. Soc., Vol. 16, Issue 2, 326–332 (1977).
17. Yosida K. Functional Analysis. Springer Verlag, Berlin-Göttingen-Heidelberg, (1965).
Recommended Citation
Azizov, Azizkhon
(2021)
"Ergodic theorems for d-dimensional flows in ideals of compact operators,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 4:
Iss.
1, Article 4.
DOI: https://doi.org/10.56017/2181-1318.1150