Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
In this paper we give a definition of A(z)-subharmonic functions and consider some properties of A(z)-subharmonic functions. Namely A(z)-subharmonicity criterion in class C2.
First Page
474
Last Page
484
References
1. Ahlfors L. Lectures on quasiconformal mappings. Toronto-New York-London (1966).
2. Bojarski B. Generalized solutions of a system of differential equations of the first order of the elliptic type with discontinuous coefficients. Math. comp., Vol. 43, Issue 85, 451–503 (1957).
3. Sadullaev A. Theory Plurepotentials. Applications. Palmarium academic publishing (2012).
4. Sadullaev A. Dirichlet problem to Monge-Ampere equation, DAN USSR, Vol. 267, No. 3, 563–566 (1982).
5. Vekua I.N. Generalized analytical functions. Moscow, "Science" (1988).
6. Volkovysky L.I. Quasiconformal mappings. Lviv (1954).
7. Gutlyanski V., Ryazanov V., Srebro U., Yakubov E. The Beltrami equation: a geometric approach. Springer (2011).
8. Zhabborov N.M., Otaboev T.U. Cauchy's theorem for A-analytical functions, Uzbek Mathematical Journal, No. 1, 15–18 (2014).
9. Zhabborov N.M., Otaboev T.U. An analogue of the Cauchy integral formula for analytic functions. Uzbek Mathematical Journal, No. 4, 50–59 (2016).
10. Sadullaev A., Zhabborov N.M. On a class of A-analitic functions. Sibirian Federal University, Maths and Physics, Vol. 9, Issue 3, pp. 374–383 (2016).
11. Zhabborov N.M. Morer’s theorem and functional series in the class of A-analytic functions. Siberian Federal University, Maths and Physics, Vol. 11, Issue 1, 50–59 (2018).
12. Zhabborov N.M., Otaboev T.U., Khursanov Sh.Ya. Schwartz Inequality and Schwartz Formula for A-analytical Functions. Contemporary Mathematics. Fundamental Directions. Vol. 64, No. 4, 637–649 (2018).
13. Khursanov Sh.Ya. A(z)-harmonic function. VESTNIK NUUz, No. 2/2, 5–8 (2017).
14. Khursanov Sh.Ya. Geometric properties of A-harmonic functions. Bullitin of NUUz: Mathematics and Natural Sciences, Vol. 3, Issue 2, 236–245 (2020).
15. Bukhheim A.L., Kazantsev S.G. Beltrami-type elliptic systems and tomography problems. Report. USSR Academy of Sciences, Vol. 315, No. 1, 15–19 (1990).
16. Zhabborov N.M., Imomnazarov H.Kh. Some initial boundary value problems in the mechanics of two-speed media. Monograph (2012).
17. Solomentsev E.D. Harmonic and subharmonic functions and their generalizations. Itogi Nauki. Ser. Mat. anal Theor Probably Reg., 83–100 (1964).
18. Landkof N.S. Foundations of Modern Potential Theory. Springer (1972).
19. Axler P.S., Bourdon R.W. Harmonic Function Theory (2nd edition). Springer-Verlag. ISBN 0-387-95218-7 (2001).
20. Helms L.L. Introduction to potential theory. ISBN 0-88275-224-3 (1975).
Recommended Citation
Khursanov, Shohruh
(2020)
"Some properties of A(z)-subharmonic functions,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 3:
Iss.
4, Article 4.
DOI: https://doi.org/10.56017/2181-1318.1141