Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
It is known that, the harmonic measure of a set E, relative to a domain D, is defined by means of subharmonic functions on D. In this article we define a generalization of a harmonic measure and prove some of its properties.
First Page
463
Last Page
473
References
1. Sadullaev A. Plurisubharmonic functions. Sovrem. Probl. Mat. Fund. Naprav., VINITI, Vol. 8, 65–113 (1985) (in Russian).
2. Sadullaev A. Pluripotential theory. Applications. Palmarium Academic Publishing, 307 p. (2012) (in Russian).
3. Sadullaev A. P-regularity of sets in ℂn. Lect. Notes. in Math, Vol. 798, 402–407 (1980).
4. Sadullaev A. Plurisubharmonic measures and capacities on complex manifolds. Uspekhi Mat. Nauk, Vol. 36, Issue 4, 53–105 (1981).
5. Nevanlinna R. Analytic Functions. Springer-Verlag Berlin Heidelberg, 376 p. (1970). https://doi.org/10.1007/978-3-642-85590-0.
6. Riesz F. Uber die Randwerte einer analytischen Funktion. Math Z, Vol. 18, 87–95 (1923). https://doi.org/10.1007/BF01192397.
7. Hayman W.K., Kennedy P.B. Subharmonic Functions. London, New York, San Francisco: Academic Press. 284 p. (1976).
8. Privalov I.I. Subharmonic Functions. Moscow: Gostekhizdat, 200 p. (1937) (in Russian).
9. Landkof N.S. Foundations of Modern Potential Theory. New York, Berlin, Heidelberg: Springer-Verlag, 517 p. (1972).
10. Brelot M. Elements de la theorie classique du potential. Paris: Centre de Documentation Universitaire, 198 p. (1959).
11. Demailly J.P. Potential Theory in Several Complex Variables, Universit´e de Grenoble I, Institut Fourier, 74 p. (1995).
12. Narzillaev N.X. About 𝜓-regular points. Tashkent, Acta NUUz, $\No$ 2.2, 173–175 (2017).
13. Ransford T. Potential theory in the comlex plane. Cambridge University Press, 240 p. (1995).
Recommended Citation
Narzillaev, Nurbek and Kuldoshev, Kobiljon
(2020)
"The ψ-harmonic measure and its properties,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 3:
Iss.
4, Article 3.
DOI: https://doi.org/10.56017/2181-1318.1125