Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
We considered the Airy equation on the simple star graph with three semi-infinite bonds. At the branching point of the graph we used second kind vertex conditions. Exact integral representation of the solution is obtained via Fokas unified transformation method.
First Page
438
Last Page
447
References
1. Abdinazarov S. The general boundary value problem for the third order equation with multiple characteristics (in Russian). Differential Equations, Vol. 13, Issue 1, 3–12 (1881).
2. Colliander J.E., Kenig C.E. The generalized Korteweg-de Vries equation on the half line. Commun. Partial Differ. Equations, Vol. 27, Issue 11-12, 2187–2266 (2002).
3. Albert R., Barabasi A.L. Statistical mechanics of complex networks. Reviews of Modern Physics, Vol. 74, Issue 1, 47–97 (2002).
4. Ablowitz M.J., Fokas A.S. Complex Variables Introduction and Applications Second Edition. Cambridge University Press, 660 p. (2003).
5. Cohen R., Havlin S. Complex Networks: Structure, Robustness and Function. Cambridge University Press, 248 p. (2010).
6. Mugnolo D., Noja D. and Seifert Ch. Airy-type evolution equations on star graphs. Analysis and PDE. Vol. 11, Issue 7, 1625–1652 (2018).
7. Cavalcante M. The Korteweg–de Vries equation on a metric star graph. Z. Angew. Math. Phys., Vol. 69, Issue 5, 124 (2018).
8. Seifert Ch. The linearized Korteweg-de-Vries equation on general metric graphs. The Diversity and Beauty of Applied Operator Theory, Vol. 268, 449–458 (2018).
9. Fokas A.S. A unified transform method for solving linear and certain nonlinear PDEs. In Proc. R. Soc. A, Vol. 453, 1411–1443 (1997).
10. Fokas A.S. A Unified Approach to Boundary Value Problems. SIAM., USA, 352 p. (2008).
11. Sobirov Z.A., Akhmedov M.I., Uecker H. Cauchy problem for the linearized KdV equation on general metric star graphs. Nanosystems: Physics, Chemistry, Mathematics, Vol. 6, Issue 1, 198–204 (2015).
12. Sobirov Z.A., Akhmedov M.I., Karpova O.V., Jabbarova B. Linearized KdV equation on a metric graph. Nanosystems: Physics, Chemistry, Mathematics, Vol. 6, Issue 6, 757–761 (2015).
13. Akhmedov M.I., Sobirov Z.A., Eshimbetov M.R. Initial-boundary value problem for the linearized KdV equation on simple metric star graph. Uzbek Mathematical Journal, Issue 4, 13–20 (2017).
14. Khudayberganov G., Sobirov Z.A., Eshimbetov M.R. Unified Transform method for the Schrӧdinger Equation on a Simple Metric Graph. Journal of Siberian Federal University. Mathematics & Physics, Vol. 12, Issue 4, 412–420 (2019).
15. Khudayberganov G., Sobirov Z.A., Eshimbetov M.R. The Fokas' unified transformation method for heat equation on general star graph. Uzbek Mathematical Journal, Issue 1, 73–81. (2019).
16. Volkova A.S. The generelized solution of the boundary value problems for heat equation on graphs. Vestnik Sankt-Piterbukgskogo Universiteta, Series 10, Vol. 3, 39–47 (2013) (in Russian).
17. Fokas A.S., Pelloni B., Baoqiang X. Evolution equations on time-dependent intervals. arXiv:1908.03729v1. 10 Aug. 22 p. (2019).
18. Deconinck B., Pelloni B., Sheils N.E. Non-steady-state heat conduction in composite walls. Proc. R. Soc. A., Vol. 470(2165), pp. 23 (2014).
19. Deconinck B., Sheils N.E., Smith D.A. The Linear KdV equation with an Interface. Commun. Math. Phys., Vol. 347, 489–509 (2016).
20. Sheils N.E., Deconinck B. Heat conduction on the ring: Interface problems with periodic boundary conditions. Applied Mathematics Letters, Vol. 37, 107–111 (2014).
21. Kesici E., Pelloni B., Tristan P., Smith D. A numerical implementation of the unified Fokas transform for evolution problems on a finite interval. Euro. Jnl of Applied Mathematics, Vol. 29, 543–567 (2018).
22. Martina Ch.B., Daniela M., Schneider G. Diffusive stability for periodic metric graphs. Mathematische Nachrichten, 1–14 (2018). DOI: 10.1002/mana.201800125.
23. Fokas A.S., Pelloni B. Unified Transform for Boundary Value Problems. Applications and Advances. SIAM., USA, 293 p. (2015).
24. Pelloni B. Well-posed boundary value problems for linear evolution equations on a finite interval. Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 136, 361–382 (2004).
25. Pelloni B. The spectral representation of two-point boundary-value problems for third-order linear evolution partial differential equations. Proc. R. Soc. A., Vol. 461, 2965–2984 (2005).
26. Himonas A.A., Mantzavinos D., Yan F. The Korteweg-de Vries equation on an interval. J. Math. Phys., Vol. 60, Issue 5, 051507, pp. 26 (2019).
27. Fokas A.S., Pelloni B. A transform method for linear evolution PDEs on a finite interval. IMA Journal of Applied Mathematics, Vol. 70, Issue 4, 564–587 (2005).
28. Fokas A.S. A new transform method for evolution partial differential equations. IMA Journal of Applied Mathematics, Vol. 67, Issue 6, 559–590 (2002).
29. Chiltin D. An Alternative Approach to the Analysis of Two-Point Boundary Value Problems for Linear Evolution PDEs and Applications. Thesis submitted for the degree of Doctor of Philosophy, 273 p. (2006).
30. Levin B.Ja. Distribution of Zeros of Entire Functions. Translation of Mathematical Monographs, AMS, 536 p. (1964).
Recommended Citation
Sobirov, Zarifboy and Eshimbetov, Mardonbek
(2020)
"The Fokas' unified transformation method for Airy equation on simple open star graph,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 3:
Iss.
4, Article 1.
DOI: https://doi.org/10.56017/2181-1318.1123