Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
The experimental results on the self-aggregation of fullerene C60 particles in a microvolume of drying droplets of a colloidal solution of fullerene on a solid substrate are presented. Using methods of scanning electron microscopy and atomic force microscopy, it was shown that in the volume of an evaporating droplet of a solution of fullerene C60 in xylene, deposited on the surface of a flat silicon substrate at room temperature, nanostructured and porous mC60 aggregates of quasispherical and elongated spherical shapes with geometrical sizes in average diameter up to D≈4000 nm are synthesized. It is established that an increase in the fullerene concentration in the initial drop of the same solution leads to an increase in the average size of the resulting fullerene aggregates. The basic physical features and regularities characterizing the processes of self-aggregation of fullerene particles in a volume of drying drop were determined.
First Page
332
Last Page
343
References
1. Bigioni T.P., Lin X.M., Nguyen T.T., Corwin E.I., Witten T.A., Jaeger H.M. Kinetically driven self-assembly of highly ordered nanoparticle monolayers. Nat Mater., Vol. 5, No. 4, 265–270 (2006). doi:10.1038/nmat1611Nature
2. Nuzzo M., Millqvist-Fureby A., Sloth J., Bergenstahl B. Surface Composition and Morphology of Particles Dried Individually and by Spray Drying. Dry. Technol., Vol. 33, 757–767 (2014). doi:10.1080/07373937.2014.990566
3. Baldelli A., Power R.M., Miles R.E.H., Reid J.P., Vehring R. Effect of crystallization kinetics on the properties of spray dried microparticles. Aerosol Science and Technology, Vol. 50, No. 7, 693–704 (2016). doi:10.1080/02786826.2016.1177163
4. Karapetsas G., Sahu Ch.K., Matar O.K. Evaporation of Sessile Droplets Laden with Particles and Insoluble Surfactants. Langmuir, Vol. 32, No. 27, 6871–6881 (2016). doi:10.1021/acs.langmuir.6b01042
5. Zhan Z., An J., Wei Y., Tran V.T., Du H. Inkjet-printed optoelectronics. Nanoscale, Vol. 9, No. 3, 965–993 (2017). doi:10.1039/C6NR08220C
6. Ailloud Q., Zerrad M., Amra C. Broadband loss-less optical thin-film depolarizing devices. Optics Express., Vol. 26, No. 10, 13264–13288 (2018). doi:10.1364/OE.26.013264
7. Roth K.M., Dontha N., Dabke R.B., Gryko D. Molecular approach toward information storage based on the redox properties of porphyrins in self-assembled monolayers. J. Vac. Sci. Technol. B., Vol. 18, 2359–2364 (2000). doi:10.1116/1.1310657
8. Faustini M., Capobianchi A., Varvaro G., Grosso D. Highly controlled dip-coating deposition of fct FePt nanoparticles from layered salt precursor into nanostructured thin films: An easy way to tune magnetic and optical properties. Chem. Mater., Vol. 24, 1072–1079 (2012). doi:10.1021/cm2033492
9. Mani V., Devasenathipathy R., Chen S.-M., Kohilarani K., Ramachandran R. A Sensitive Amperometric Sensor for the Determination of Dopamine at Graphene and Bismuth Nanocomposite Film Modified Electrode. Int. J. Electrochem. Sci., Vol. 10, 1199–1207 (2015). doi:10/100201199
10. Liu S.-Y., Lian L., Pan J., Lu J.-G., Shieh H.-P.D. Highly Sensitive and Optically Transparent Resistive Pressure Sensors Based on a Graphene/Polyaniline-Embedded PVB Film. IEEE Transactions on Electron Devices, Vol. 65, No. 5, 1939–1945 (2018). doi:10.1109/TED.2018.2814204
11. Semenov K.N., Charykov N.A., Keskinov V.A., Piartman A.K., Blokhin A.A., Kopyrin A.A. Solubility of light fullerenes in organic solvents. J. Chem. Eng. Data, Vol. 55, 13–36 (2010). doi:10.1021/je900296s
12. Mchedlov-Petrossyan N.O. Fullerenes in Molecular Liquids. Solutions in "Good" Solvents: Another View. Journal of Molecular Liquids, Vol. 161, No. 1, 1–12 (2011). doi:10.1016/j.molliq.2011.04.001
13. Makhmanov U.K., Ismailova O.B., Kokhkharov A.M., Zakhidov E.A., Bakhramov S.A. Features of self-aggregation of C60 molecules in toluene prepared by different methods. Physics Letters A, Vol. 380, No. 24, 2081–2084 (2016). doi:10.1016/j.physleta.2016.04.030
14. Nakamura E., Isobe H. Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience. Accounts of Chemical Research, Vol. 36, No. 11, 807–815 (2003). doi:10.1021/ar030027y
15. Avdeev M.V., Khokhryakov A.A., Tropin T.V., Andrievsky G.V., Klochkov V.K., Derevyanchenko L.I., Rosta L., Garamus V.M., Priezzhev V.B., Korobov M.V., Aksenov V.L. Structural Features of Molecular-Colloidal Solutions of C60 Fullerenes in Water by Small-Angle Neutron Scattering. Langmuir, Vol. 20, No. 11, 4363–4368 (2004). doi:10.1021/la0361969
16. Sayes C.M., Fortner J.D., Guo W., Lyon D., Boyd A.M., Ausman K.D., Tao Y.J., Sitharaman B., Wilson L.J., Hughes J. B., West J. L., Colvin V.L. The differential cytotoxicity of water-soluble fullerenes. Nano Letters, Vol. 4, No. 10, 1881–1887 (2004). doi:10.1021/nl0489586
17. Colherinhas G., Fonseca T.L., Fileti E.E. Theoretical analysis of the hydration of C60 in normal and supercritical conditions. Carbon, Vol. 49, No. 1, 187–192 (2011). doi:10.1016/j.carbon.2010.09.002
18. Torresa V.M., Posac M., Srdjenovicc B., Simplicioa A.L. Solubilization of fullerene C60 in micellar solutions of different solubilizers. Colloids and Surfaces B: Biointerfaces, Vol. 82, No. 1, 46–53 (2011). doi:10.1016/j.colsurfb.2010.08.012
19. Brant J.A., Labille J., Bottero J.Y., Wiesner N.R. Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir, Vol. 22, 3878–3885 (2006). doi:10.1021/la053293o
20. Mashino T., Shimotohno K., Ikegami N., Nishikawa D, Okuda K, Takahashi K, Nakamura S, Mochizuki M. Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett., Vol. 15, No. 4, 1107–1109 (2005). doi:10.1016/j.bmcl.2004.12.030
21. Anilkumar P., Lu F., Cao L., Luo P.G., Liu J.-H., Sahu S., Tackett K. N., Wang Y., Sun Y.-P. Fullerenes for Applications in Biology and Medicine. Current Medicinal Chemistry, Vol. 18, No. 14, 2045-2059 (2011). doi:10.2174/092986711795656225
22. Hilburn E., Murdianti S., Maples D., Williams S., Damron T., Kuriyavar I., Ausman D. Synthesizing aqueous fullerene colloidal suspensions by new solvent-exchange methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 401, 48–53 (2012). doi:10.1016/j.colsurfa.2012.03.010
23. Ryan J.J., Bateman H.R., Stover A., Gomez G., Norton S.K., Zhao W., Schwartz L.B., Lenk R., Kepley C.L. Fullerene nanomaterials inhibit the allergic response. J. Immunol., Vol. 179, No. 1, 665–672 (2007). doi:10.4049/jimmunol.179.1.665
24. Shershakova N., Baraboshkina E., Andreev S., Purgina D., Struchkova I., Kamyshnikov O., Nikonova A., Khaitov M. Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis. Journal of Nanobiotechnology, Vol. 14, 8–18 (2016). doi:10.1186/s12951-016-0159-z
25. Chen Z., Ma L., Liu Y., Chen C. Applications of functionalized fullerenes in tumor theranostics. Theranostics, Vol. 2, No. 3, 238–250 (2012). doi:10.7150/thno.3509
26. Prylutska S., Panchuk R., Gołuński G., Skivka L., Prylutskyy Y., Hurmach V., Skorohyd N., Borowik A., Woziwodzka A., Piosik J., Kyzyma O., Garamus V., Bulavin L., Evstigneev M., Buchelnikov A., Stoika R., Berger W., Ritter U., Scharff P. C60 fullerene enhances cisplatin anticancer activity and overcomes tumor cell drug resistance. Nano Research, Vol. 10, No. 2, 652–671 (2018). doi:10.1007/s12274-016-1324-2
27. Didenko G., Prylutska S., Kichmarenko Y., Potebnya G., Prylutskyy Y., Slobodyanik N., Ritter U., Scharff P. Evaluation of the antitumor immune response to C60 fullerene. Materialwissenschaft und Werkstofftechnik, Vol. 44, No. 2-3, 124–128 (2013). doi:10.1002/mawe.201300082
28. Hirai T., Yoshioka Y., Udaka A., Uemura E., Ohe T., Aoshima H., Gao J.-Q., Kokubo K., Oshima T., Nagano K., Higashisaka K., Mashino T., Tsutsumi Y. Potential Suppressive Effects of Two C60 Fullerene Derivatives on Acquired Immunity. Nanoscale Res Lett., Vol. 11, 449 (2016). doi:10.11862Fs11671-016-1663-7
29. Gharbi N., Pressac M., Hadchouel M., Szwarc H., Wilson S.R., Moussa F. [60] Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett., Vol. 5, No. 12, 2578–2585 (2005). doi:10.1021/nl051866b
30. Galvan Y.P., Alperovich I., Zolotukhin P., Prazdnova E., Mazanko M., Belanova A., Chistyakov V. Fullerenes as anti-aging antioxidants. Current Aging Science, Vol. 10, No. 1, 56–67 (2017). doi:10.2174/1874609809666160921120008
31. Tykhomyrov A.A., Nedzvetsky V.S., Klochkov V.K., Andrievsky G.V. Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals. Toxicology, Vol. 246, No. 2-3, 158–165 (2008). doi:10.1016/j.tox.2008.01.005
32. Goodarzi S., Da Ros T., Conde J., Sefat F., Mozafari M. Fullerene: biomedical engineers get to revisit an old friend. Materials Today, Vol. 20, No. 8, 460–480 (2017). doi:10.1016/j.mattod.2017.03.017
33. Zhou Z., Lenk R., Dellinger A., MacFarland D., Kumar K., Wilson S.R., Kepley C.L. Fullerene nanomaterials potentiate hair growth. Nanomedicine, Vol. 5, No. 2, 202–207 (2009). doi:10.1016/j.nano.2008.09.005
34. Mousavi S.Z., Nafisi S., Maibach H.I. Fullerene nanoparticle in dermatological and cosmetic applications. Nanomedicine, Vol. 13, No. 3, 1071–1087 (2017). doi:10.1016/j.nano.2016.10.002
35. Andrievsky G.V., Bruskov V.I., Tykhomyrov A.A., Gudkov S.V. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostructures in vitro and in vivo. Free Radic. Biol. Med., Vol. 47, No. 6, 786–793 (2009). doi:10.1016/j.freeradbiomed.2009.06.016
36. Yang X.Y., Edelmann R.E., Oris J.T. Suspended C60 nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia magna. Aquat Toxicol., Vol. 100, No. 2, 202–210 (2010). doi:10.1016/j.aquatox.2009.08.011
37. Theriot C.A., Casey R.C., Moore V.C., Mitchell L., Reynolds J.O., Burgoyne M., Partha R., Huff J.L., Conyers J.L., Jeevarajan A., Wu H. Dendro[C60]fullerene DF-1 provides radioprotection to radiosensitive mammalian cells. Radiat. Environ. Biophys., Vol. 49, No. 3, 437–445 (2010). doi:10.1007/s00411-010-0310-4
38. Baatia T., Bourassetc F., Gharbid N., Njimb L., Abderrabbae M., Kerkenib A., Szwarcd H., Moussad F. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials, Vol. 33, No. 26, 6292–6294 (2012). doi:10.1016/j.biomaterials.2012.03.036
39. Quick K.L., Ali S.S., Arch R., Xiong C., Wozniak D., Dugan L.L. A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiology of Aging, Vol. 29, No. 1, 117–128 (2008). doi:10.1016/j.neurobiolaging.2006.09.014
40. Makhmanov U.K., Kokhkharov A.M., Bakhramov S.A. Organic fractal nano-dimensional structures based on fullerene C60. Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 27, No. 03, 273–278 (2019). doi:10.1080/1536383X.2019.1570922
Recommended Citation
Makhmanov, Urol; Kokhkharov, Abdulmutallib; Bakhramov, Sagdilla; and Erts, Donats
(2020)
"Self-aggregation of C60 particles in a volume of evaporating droplets on a flat surface,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 3:
Iss.
3, Article 4.
DOI: https://doi.org/10.56017/2181-1318.1112