Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
In this work initial-boundary value problems for time-fractional Airy equation are considered on the different intervals. We studied properties of potentials for this equation and using these properties found the solutions of the considered problems. The uniqueness of problems proved using the analogue of Grö nwall–Bellman inequality and apriory estimate.
First Page
222
Last Page
235
References
1. Kilbas A.A., Srivastava H.M. and Trujillo J.J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Vol. 204. Amsterdam, etc.: Elsevier (2006).
2. Carpintery A., Mainardi F. (Eds.) Fractals and Fractional Calculus in Continuum Mechanics. CIAM Cources and Lectures. Vol. 376, Wien: Springer (1997).
3. Hilfer R. (Ed.) Applications of Fractional Calculus in Physics. Singapore: WSPC (2000).
4. Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Reports. Vol. 339, 1–77 (2000).
5. Kivshar Y.S. and Agarwal G.P. Optical Solitons: From Fibers to Photonic Crystals. Academic, San Diego (2003).
6. Kottos T. and Smilansky U. Periodic Orbit Theory and Spectral Statistics for Quantum Graphs. Annals of Physics. Vol. 274, Issue 1, 76–124 (1999).
7. Gnutzmann S. and Smilansky U. Quantum graphs: Applications to quantum chaos and universal spectral statistics. Advances in Physics. Vol. 55, Issue 5–6, 527–625 (2006).
8. Gorenflo R., Luchko Y. and Mainardi F. Analytical properties and applications of the Wright function. Fractional Calculus and Applied Analysis. Vol. 2, Issue 4, 383–414 (1999).
9. Djurayev T.Dj. Krajeviye zadachi dlya uravneneiy smeshannogo i smeshanno-sostavnogo tipov. "Fan", pp. 240 (1979).
10. Sobirov Z.A., Uecker H. and Akhmedov M.I. Exact solutions of the Cauchy problem for the linearized KdV equation on metric star graphs. Uzbek Mathematical Journal, Vol. 3, 143–154 (2015).
11. Sobirov Z.A., Akhmedov M.I. and Uecker H. Cauchy problem for the linearized KdV equation on general metric star graphs. Nanosystems: Physics, Chemistry, Mathematics. Vol. 6, Issue 2, 198–204 (2015).
12. Sobirov Z.A., Rakhimov K.U. Zadacha Koshi dlya uravneniya Eyri s drobnoy proizvodnoy po vremeni na zvezdoobraznom grafe. Bulletin of the Institute of Mathematics. Vol. 5, 40–49 (2019).
13. Mugnolo D., Noja D. and Seifert Ch. Airy-type evolution equations on star graphs. Analysis and PDE. Vol. 11, Issue 7 (2018).
14. Cavalcante M. The Korteweg–de Vries equation on a metric star graph. Zeitschrift für angewandte Mathematik und Physik. 69:124 (2018).
15. Sobirov Z.A., Akhmedov M.I., Karpova O.V. and Jabbarova B. Linearized KdV equation on a metric graph. Nanosystems: Physics, Chemistry, Mathematics. Vol. 6, Issue 6, 757–761(2015).
16. Seifert Ch. The linearized Korteweg-de-Vries equation on general metric graphs. The Diversity and Beauty of Applied Operator Theory. 449–458 (2018).
17. Pskhu A.V. Uravneniya v chastnykh proizvodnykh drobnogo poryadka. Moscow. pp. 200 (2005.)
18. Mainardi F., Mura A. and Pagnini G. The M-Wright function in time-fractional diffusion processes: a tutorial survey. International Journal of Differential Equations. Vol. 3. (2010).
19. Pskhu A.V. Fundamentalnoe reshenie uravneniya tret'ego poryadka s drobnoy proizvodnoy. Uzbek Mathematical Journal. Vol. 4, 119–127 (2017).
20. Cattabriga L. Un problema al contorno per una equazione parabolica di ordine dispari. Annali della Scuola Normale Superiore di Pisa. Vol. 13, Issue 3, 163–203 (1959).
21. Alikhanov A.A. A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations. Differential equations, Vol. 46, Issue 5, 658-–664(2010).
Recommended Citation
Rakhimov, Kamoliddin
(2020)
"The method of potentials for the Airy equation of fractional order,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 3:
Iss.
2, Article 11.
DOI: https://doi.org/10.56017/2181-1318.1098