•  
  •  
 

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

Abstract

On the d-dimensional lattice 𝕋d, d= 1, 2 the discrete Schrödinger operator Hλµ with non-local potential constructed via the Dirac delta function and shift operator is considered. The dependency of negative eigenvalues of the operator on the parameters is explicitly derived.

First Page

47

Last Page

58

References

1. Albeverio S., Lakaev S.N., Makarov K.A., Muminov Z.I. The Threshold Effects for the Two-particle Hamiltonians on Lattices, Comm. Math. Phys. Vol. 262, 91–115 (2006).

2. Bellissard J., Schulz-Baldes H. Scattering theory for lattice operators in dimension d≥3, arXiv:1109.5459v2, 2012.

3. Berkolaiko G., Carlson R., Fulling S.A., Kuchment P.A. Quantum Graphs and Their Applications, Contemp. Math. Vol. 415 (2006).

4. Berkolaiko G., Kuchment P.A. Introduction to Quantum Graphs, AMS Mathematical Surveys and Monographs RI, Vol. 186, (2013). MR 3013208.

5. Chung F. Spectral Graph Theory, CBMS Regional Conf. Series Math., Washington DC (1997).

6. Exner P., Kuchment P.A., Winn B. On the location of spectral edges in Z-peridoc media, J. Phys. A 43, (2010) no. 47, 474022, 8. MR 2738117.

7. Exner P., Keating J.P., Kuchment P.A., Sunada T., Teplyaev A. Analysis on Graphs and Its Applications, Proc. Symp. Pure Math., AMS Providence (2008).

8. Grigor'yan A. Heat kernels on manifolds, graphs and fractals, European Congress of Mathematics, Barcelona, July 10–14, 2000, Progress in Mathematics 201, BirkhAauser, 2001, pp. 393–406

9. Faria da Veiga P.A., Ioriatti L., O'Carroll M. Energy-momentum spectrum of some two-particle lattice Schrödinger Hamiltonians. Phys. Rev. E. Vol. 3, Issue 66, 016130, 9 pp. (2002).

10. Hiroshima F., Sasaki I., Shirai T., Suzuki A. Note on the spectrum of discrete Schrödinger operators, J. Math-for-Industry, Vol. 4, 105–108 (2012).

11. Korotyaev E., Saburova N. Schrödinger operators on periodic discrete graphs, arXiv:1307.1841 (2013).

12. Lakaev S.N., Bozorov I.N. The number of bound states of one particle Hamilonian on a three-dimensional lattice. Theoretical and Mathematical physics, Vol. 158, Issue 3, 360–376 (2009).

13. LakaevS.N., TilovovaSh.M. Merging of eigenvalues and resonances of a two-particle Schrödinger operator. Theoretical and Mathematical Physics. 1994;101:2:13201331.

14. Post O. Spectral Analysis on Graph-Like Spaces, Lecture Notes in Mathematics 2039, Springer, 2012.

15 Yafaev D.R. Scattering theory: Some old and new problems, Lecture Notes in Mathematics, 1735. Springer-Verlag, Berlin, 2000, 169 pp.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.