Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences


In this work we consider some applications of the Weierstrass preparation theorem and Weierstrass pseudopolynomials to study of behavior of the oscillatory integrals and Fourier transforms with analytic and smooth phases with critical points.

First Page


Last Page



1. Arkhipov G.I., Chubarikov V.N., Karatsuba A.A. Trigonometric sums in number theory and analysis. Translated from the 1987 Russian original. de Gruyter Expositions in Mathematics, 39. Walter de Gruyter GmbH Co. KG, Berlin, (2004). – x+554 pp.

2. Arnol'd V.I., Gusein-Zade S.M., Varchenko A.N. Singularities of differentiable maps. Vol. I. The classification of critical points, caustics and wave fronts. Translated from the Russian by Ian Porteous and Mark Reynolds. Monographs in Mathematics, Vol. 82. Birkhduser Boston, Inc., Boston, MA, (1985).

3. Ikromov I.A. Damped oscillatory integrals and maximal operators. Math. Notes, Vol. 78, Issue 5–6, 773–790 (2005). DOI: 10.1007/s11006-005-0183-z

4. Ikromov I.A., Muranov Sh.A. Estimates of oscillatory integrals with a damping factor. Math. Notes, V. 104, Issue 1–2, 218–230 (2018). DOI: 10.1134/S0001434618070234

5. Littman W. Fourier transform of surface-carried measures and differentiablity of surface averages. Bull. Amer. Math. Soc., Vol. 69, No. 6, 766–770 (1963). DOI: 10.1090/S0002-9904-1963-11025-3

6. Osgood W. Lehrbuch der Funktionentheorie, Bd.II. Teubner, Leipzig, (1929). – 90 pp.

7. Phong D.H., Stein E.M., Sturm J.A. On the growth and stability of real-analytic functions. Amer. J. Math., Vol. 121, No. 3, 519–554 (1999). DOI: 10.1353/ajm.1999.0023

8. Randol B. On the asymptotic behavior of the Fourier transform of the indicator function of a convex set. Trans. Amer. Math. Soc., Vol. 139, 278–285 (1970). DOI: 10.1090/S0002-9947-1969-0251450-5

9. Sadullaev A. Criteria algebraicity of analytic sets. Functional analysis and its application, Vol. 6, Issue 1, 78–79 (1972). DOI: 10.1007/BF01075520

10. Svensson I. Estimates for the Fourier transform of the characteristic function of a convex set. Ark. Mat., Vol. 9, Issue 1–2, 11–22 (1970). DOI: 10.1007/BF02383634

11. Sogge C.D., Stein E.M. Averages of functions over hypersurfaces in ℝn. Invent. Math., Vol. 82, Issue 3, 543–556 (1985). DOI: 10.1007/BF01388869

12. Stein E.M. Harmonic Analysis: real-valued methods, orthogonality and Oscillatory Integrals. Princeton, (1993).

Included in

Analysis Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.