Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences


Self-assembling features of molecules of C70 in benzene solution prepared in two various ways – equilibrium and non-equilibrium – has been investigated experimentally by method of high-resolution transmission electron microscopy. It was demonstrated, that the formation of densely packed monomolecular fullerene aggregates with a diameter of not more than 30 nm in solutions prepared by the equilibrium method (without the use of external mechanical influences on solution). In the case of solutions C70, which were prepared by the non-equilibrium method (stirring of solution of C70 by a mechanical rotator), large quasispherical aggregates of nanoporous structure with fractal size D ≈ 2.19 were synthesized.

First Page


Last Page



1. Kroto H.W., Heath J.R., O'Brien S.C., Curl R.F., Smalley R.E. Nature. 318 (1985) 162-163, doi:10.1038/318162a0.

2. Mchedlov-Petrossyan N.O., Klochkov V.K., Andrievsky G.V. Journal of Chem. Soc. 93 (1997) 4343-4346, doi:10.1039/A705494G.

3. Ruoff R.S., Tse D.S., Malhotra R., Lorents D.C. Journal of Phys. Chem. 97 (1993) 3379-3383.

4. Ritter U., Prylutskyy Yu.I., Evstigneev M.P., Davidenko N.A., Cherepanov V.V., Senenko A.I., Marchenko O.A., Naumovets A.G. Nanotubes and Carbon Nanostructures 23 (2014) 530-534, doi: 10.1080/1536383X.2013.870900.

5. Da Ros T., Prato M. Chem. Commun. 21 (1999) 663-669, doi:10.1039/A809495K.

6. Bakry R., Vallant R.M., Najam-ul-Haq M., Szabo Z., Huck C.W., Bonn G.K. Intern. J. Nanomed. 2 (2007) 639-649, PMCID:PMC2676811.

7. Kepley C.J. Nanomed Nanotechol. 3 (2012) 1000e111, doi:10.4172/2157-7439.1000e111.

8. Davidenko V.M., Kidalov S.V., Shakhov F.M., Yagovkina M.A., Yashin V.A., Vul A.Y. Diamond and Related Materials. 13 (2004) 2203-2206, doi:10.1016/j.diamond.2004.08.001.

9. Anilkumar P., Lu F., Cao L., Luo P.G., Liu J.H., Sahu S., Tackett K.N., Wang Y., Sun Y.P. Curr. Med. Chem. 18 (2011) 2045-2059, doi:10.2174/092986711795656225.

10. Dzwilewski A., Wagberg T., Edman L. Journal of Am. Chem. Soc. 131 (2009) 4006-4011, doi:10.1021/ja807964x.

11. Campoy-Quiles M., Ferenczi T., Agostinelli T., Etchegoin P.G., Kim Y., Anthopoulos T.D., Stavrinou P.N., Bradley D.D., Nelson J. Nat. Mater. 7(2)(2008)158-64.

12. Bakhramov S.A., Kokhkharov A.M., Parpiev O.R., Makhmanov U.K. Journal of Applied Spectroscopy. 76 (2009) 82-89, doi:10.1007/s10812-009-9146-6.

13. Tutt L.W., Kost A. Nature 356, 225 (1992).

14. Kojima Y., Matsuoka T., Takahashi H., Kurauchi T. Journal of Mater. Sci. Lett. 16, 2029 (1997).

15. Vincent D., Cruickshank J. Appl. Opt. 36, 7794 (1997).

16. Zhu P., Wang P., Qui W., Liu Y., Ye C., Fang G., Song Y. Appl. Phys. Lett. 78, 1319 (2001).

17. Belousova I.M., Danilov O.B., Sidorov A.I. J. Opt. Technol. 76, 223 (2009).

18. Wang J., Enevold J., Edman L. Advanced Functional Materials, 2013. 23(25), 3220-3225.

19. Gharbi N., Pressac M., Hadchouel M., Szwarc H., Wilson S.R., Moussa F. Nano Lett. 5 (2005) 2578-2585, doi:10.1021/nl051866b.

20. Mroz P., Pawlak A., Satti M. Free Radic. Biol. Med. 43 (2007) 711-719, doi:10.1016/j.freeradbiomed.2007.05.005.

21. Jiao F., Liu Y., Qu Y., Li W., Zhou G., Ge C.C., Li Y.F., Sun B.Y. Carbon. 48 (2010) 2231-2243, doi:10.1016/j.carbon.2010.02.03.

22. Shi J., Zhang H., Wang L., Li L., Wang H., Wang Z., Li Z., Chen C., Hou L., Zhang C.Z. Biomaterials. 34 (2013) 251-261, doi:10.1016/j.biomaterials.2012.09.039.

23. Baibarac M., Mihut L., Preda N., Baltog I., Mevellec J.Y., Lefrant S. Carbon 43 (2005) 1-9.

24. Avdeev M.V., Aksenov V.L., Tropin T.V. Russian J. Phys. Chem. 84 (2010) 1273-1283, doi:10.1134/S0036024410080017.

25. Mchedlov-Petrossyan N.O. Chem. Rev.113 (2013) 5149-5193, doi:10.1021/cr3005026.

26. Kokhkharov A.M., Bakhramov S.A., Zakhidov E.A., Makhmanov U.K., Gofurov Sh. P. Int. J. Korean Phys. Soc. 64 (2014) 1494-1499, doi:10.3938/jkps.64.1494.

27. Makhmanov U., Ismailova O., Kokhkharov A., Zakhidov E., Bakhramov S. Physics Letters A. Volume 380. Issue 24. (2016) 2081-2084, doi:10.1016/j.physleta.2016.04.030.

28. Prylutskyy Yu.I., Durov S.S., Bulavin L.A., Adamenko I.I., Moroz K.O., Geru I.I., Dihor I.N., Scharff P., Eklund P.C., Grigorian L. Inter. J. Thermophys. 22 (2001), 943-956, doi:10.1081/FST-100102964.

29. Smirnov B.M. Physics of Fractal Aggregates, Nauka: Moscow, 1991.

Included in

Physics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.