Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences
Abstract
In this work, we study the electronic specific heat $C_e(T)$ of underdoped to overdoped high-$T_c$ cuprates, and identify the nature of anomalies in $C_e(T)$ at the superconducting transition temperature $T_c$ and at temperatures above $T_c$. The doped cuprate superconductor is considered as a multi-carrier model system which is composed of different types of charge carriers. The normal-state electronic specific heat $C_n(T)$ of high-$T_c$ cuprates below a characteristic pseudogap (PG) temperature $T^*$ is calculated taking into account three contributions coming from the excited components of Cooper pairs, the ideal Bose-gas of incoherent Cooper pairs and the unpaired carriers in the impurity band. Above $T^*$, two contributions to $C_n(T)$ coming from the unpaired intrinsic and extrinsic polarons are calculated within the two-component degenerate Fermi-gas model. The total electronic specific heat $C_e(T)=C_n(T)+C_s(T)$ below $T_c$ is calculated by considering the contribution $C_n(T)$ and the contribution $C_s(T)$ coming from the superfluid bosonic carriers. We have shown that our theoretical predictions of the behaviors of $C_e(T)$ near $T_c$ and above $T_c$ are strikingly similar to the behaviors of the electronic specific heat observed below and above $T_c$ in LSCO and YBCO. There is fair quantitative agreement between theoretical predictions about the anomalies in $C_e(T)$ (i.e. a $\lambda$-like anomaly near $T_c$ and a BCS-type anomaly above $T_c$ near $T^*$) and experimental data.
First Page
43
Last Page
56
References
1. Anderson P.W. The Theory of Superconductivity in the High-Tc Cuprates. Princeton University Press, Princeton (1997).
2. Tallon J.L., Loram J.W. The doping dependence of T✱-what is the real high-Tc phase diagram. Physica C, 349, 53 (2001).
3. Lee P.A., Nagaosa N., Wen X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006).
4. Solovjov A.L., Tkachenko M.A. Pseudogap and local pairs in high-Tc cuprate superconductors. arXiv:1112.3812v[cond-mat,super-con].
5. Dzhumanov S. Theory of Conventional and Unconventional Supercondutivity in the High-Tc Cuprates and Other Systems, Nova Science Publishers, New York (2013).
6. Inderhees S.E., Salamon M.B., Goldfeld N., Rice J.P., Pazol B.G., Ginsberg D.M., Liu J.Z., Crabtree G.W. Specific heat of single crystals of YBa2Cu3O7-x: Fluctuation effects in a bulk superconductor. Phys. Rev. Lett. 60, 1178 (1988).
7. Fossheim K., Nes O.M., Legreid T., Darlington C.N.W., O'Connor D.A., Gough C.E. Specific heat in mono-crystal YBCO: λ-like anomalys at 90 K and 229 K. Int. J. Mod. Phys. B 1, 1171 (1988).
8. Izbizky M.A., Nunez Regueiro M., Esquinazi P., Fainstein C. Thermal conductivity and superconductivity in EuBa2Cu3O7-x. Phys. Rev. B 38, 9220 (1988).
9. Fung P.C.W., Kwok W.Y. Tc enhancement in superconductor-semiconductor arrays. J. Superconduct. 4, 67 (1991).
10. Matsuzaki T., Ido M., Momono N., Dipasupil R.M., Nagata T., Sakai A., Oda M. Superconducting gap and pseudogap behavior in high-Tc cuprates. J. Phys. Chem. Solids 62, 29 (2001).
11. Fisher R.A., Gorden J.E., Phillips N.E. Specific heat of the high-Tc oxide superconductors. J. Superconduct. 1, 231 (1988).
12. Junod A. Optimization of the superconductor YBa2Cu3O7-δ: The effect of the edos, processing conditions, impurities and Fe doping on the specific heat, Meissner effect and susceptibility. Physica C 153-155, 1078 (1988).
13. Liu F.-S., Liu W.-F., Chen W.-F., Peng K. A possible second-order phase transition at the temperature at which a gap opens in superconductors. J. Phys.: Condens. Matter 13, 2817 (2001).
14. Kastner M.A., Birgeneau R.J., Shirane G., Endoh Y. Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys. 70, 897 (1998).
15. Kresin V.Z., Wolf S.A. Colloquium: Electron-lattice interaction and its impact on high Tc superconductivity. Rev. Mod. Phys. 81, 481 (2009).
16. Devreese J.T., Alexandrov A.S. Frölich polaron and bipolaron: recent developments. Rep. Prog. Phys. 72, 066501 (2009).
17. Zaanen J., Sawatzky G.A., Allen J.W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418 (1985).
18. Zaanen J. Why high Tc is exciting. cond-mat/0103255.
19. Lavrov A.N., Gantmakher V.F. Low-temperature resistivity of underdoped cuprates. Phys. Usp. 41, 223 (1998).
20. Dzhumanov S., Baimatov P.J., Ganiev O.K., Khudayberdiev Z.S., Turimov B.V. Possible mechanisms of carrier localization, metal-insulator transitions and stripe formation in inhomogeneous hole-doped cuprates. J. Phys. Chem. Solids 73, 487 (2012).
21. Appel J. in Polarons, edited by Firsov Ya.A., Nauka, Moscow (1975).
22. Sugai S. Local distortion specifying the superconductor phases observed by Raman scattering. Physica C 185-189, 76 (1991).
23. Muroi M., Street R. Charge distribution in triple-layered copper oxide superconductors. Physica C 248, 290 (1995).
24. Ino A., Kim C., Nakamura M., Yoshida T., Mizokawa T., Fujimori A., Shen Z.-X., Kakeshita T., Eisaki H., Uchida S. Doping-dependent evolution of the electronic structure of La2-xSrxCuO4 in the superconducting and metallic phases. Phys. Rev. B 65, 094504 (2002).
25. Basov D.N., Timusk T. Electrodynamics of high-Tc superconductors. Rev. Mod. Phys. 77, 721 (2005).
26. Dzhumanov S., Khabibullaev P.K. Microscopic theory of single particle and pair condensation of an attracting Bose gas the basis for superfluidity and superconductivity. Pramana J. Phys. 45, 385 (1995).
27. Dzhumanov S. The microscopic theory of superfluidity and superconductivity driven by single particle and pair condensation of attracting bosons. Int. J. Mod. Phys. B 12, 2151 (1998).
28. Dzhumanov S. Precursor non-superconducting pairing and novel superconductivity in underdoped and optimally doped cuprates. Physica C 460-462, 1131 (2007).
29. Kresin V.Z., Morawitz H., Wolf S.A. Mechanisms of Conventional and High Tc Superconductivity. Oxford University Press, New-York-Oxford (1993).
30. Muroi M., Street R. Charge transfer, phase separation and percolative superconductivity in $YBa_2Cu_3O_{6+y}$. Physica C 246, 357 (1995).
31. Junod A., Sanchez D., Genoud J.-Y., Graf T., Triscone G., Muller J. Specific heat of the 95 K superconductor YBa2Cu35O75 from 1 to 330 K. Physica C 185-189, 1399 (1991).
32. Landau L.D., Lifshitz E.M. Statistical Physics. Part I. Nauka, Moscow (1976).
33. Loram J.W., Mirza K.A., Wade J.M., Cooper J.R., Liang W.Y. The electronic specific heat of cuprate superconductors. Physica C 235-240, 134 (1994).
34. Dzhumanov S., Karimboev E.X. Competing pseudogap and impurity effects on the normal-state specific heat properties of cuprate superconductors. Physica A 406, 176 (2014).
35. Naumov V.N., Frolova G.I., Amitin E.B., Fedorov V.E., Samoilov P.P. Electron heat capacity and moments of phonon density of states of HoBa2Cu3O7-δ. Physica C 262, 143 (1996).
Recommended Citation
Dzhumanov, S.; Karimboev, E.; and Yavidov, B.
(2018)
"Electronic specific-heat anomalies in high-Tc cuprates,"
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 1:
Iss.
2, Article 2.
DOI: https://doi.org/10.56017/2181-1318.1012