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Abstract

Let A be a laterally complete commutative regular algebra and X be a
laterally complete A-module. In this paper we introduce a notion of passport
Γ(X) for X, which consist of uniquely defined partition of unity in the Boolean
algebra of idempotents in A and the set of pairwise different cardinal numbers.
It is proved thatA-modulesX and Y are isomorphic if and only if Γ(X) = Γ(Y ).

Keywords: Commutative regular algebra, homogeneous module, finite di-
mensional module

Mathematics Subject Classification (2010): 13C05, 16D70.

1 Introduction
J. Kaplansky [4] introduced a class of AW ∗-algebras to describe C∗-algebras, which
is close to von Neumann algebras by their algebraic and order structure. The class of
AW ∗-algebras became a subject of many researches in the operator theory (see review
in [1]). One of the important results in this direction is the realization of an arbitrary
AW ∗-algebra M of type I as a ∗-algebra of all linear bounded operators, which act
in a special Banach module over the center Z(M) of the algebra M [5]. The Banach
Z(M)-valued norm in this module is generated by the scalar product with values in
the commutative AW ∗-algebra Z(M). Later, these modules were called Kaplansky-
Hilbert modules (KHM). Detailed exposition of many useful properties of KHM is
given, for example, in ([9], 7.4). One of the important properties is a representation
of an arbitrary Kaplansky-Hilbert module as a direct sum of homogeneous KHM ([6],
[9], 7.4.7).

Development of the noncommutative integration theory stimulated an interest
to the different classes of algebras of unbounded operators, in particular, to the ∗-
algebras LS(M) of locally measurable operators, affiliated with von Neumann alge-
bras or AW ∗-algebrasM . IfM is a von Neumann algebra, then the center Z(LS(M))
in the algebra LS(M) identifies with the algebra L0(Ω,Σ, µ) of all classes of equal
almost everywhere measurable complex functions, defined on some measurable space
(Ω,Σ, µ) with a complete locally finite measure µ ([11], 2.1, 2.2). If M is an AW ∗-
algebra, then Z(LS(M)) is an extended f -algebra C∞(Q), where Q is the Stone
compact coresponding to the Boolean algebra of central projectors in M [1]. The
problem (like the one in the work of J. Kaplansky [5] for AW ∗-algebras) on possi-
bility of realization of ∗-algebras LS(M), in the case, when M has the type I, as
∗-algebras of linear L0(Ω,Σ, µ)-bounded (respectively, C∞(Q)-bounded) operators,
which act in corresponding KHM over the L0(Ω,Σ, µ) or over the C∞(Q) naturally
arises. In order to solve this problem it is necessary to construct corresponding the-
ory of KHM over the algebras L0(Ω,Σ, µ) and C∞(Q). In a particular case of KHM
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over the algebras L0(Ω,Σ, µ) this problem is solved in [7], where the decomposition
of KHM over L0(Ω,Σ, µ) as a direct sum of homogeneous KHM is given. Similar
decomposition as a direct sum of strictly γ-homogeneous modules is given in the pa-
per [2] for arbitrary regular laterally complete modules over the algebra C∞(Q) (the
definitions see in the Section 3 below).

The algebra C∞(Q) is an example of a commutative unital regular algebra over the
field of real numbers. In this algebra the following property of lateral completeness
holds: for any set {ai}i∈I of pairwise disjoint elements in C∞(Q) there exists an
element a ∈ C∞(Q) such that as(ai) = ai for all i ∈ I, where s(ai) is a support of
the element ai (the definitions see in the Section 2 below). This property of C∞(Q)
plays a crucial role in classification of regular laterally complete C∞(Q)-mpdules [2].
Thereby, it is natural to consider the class of laterally complete commutative unital
regular algebras A over arbitrary fields and to obtain variants of structure theorems
for modules over such algebras. Current work is devoted to solving this problem. For
every faithful regular laterally complete A-module X the concept of passport Γ(X),
which consist of the uniquely defined partition of unity in the Boolean algebra of
idempotents in A and the set of pairwise different cardinal numbers is constructed.
It is proved, that the equality of passports Γ(X) and Γ(Y ) is necessary and sufficient
condition for isomorphism of A-modules X and Y .

2 Laterally complete commutative regular algebras
Let A be a commutative algebra over the field K with the unity 1 and ∇ = {e ∈ A :
e2 = e} be a set of all idempotents in A. For all e, f ∈ ∇ we write e ≤ f if ef = e.
It is well known (see, for example [10, Prop. 1.6]) that this binary relation is partial
order in ∇ and ∇ is a Boolean algebra with respect to this order. Moreover, we have
the following equalities: e ∨ f = e + f − ef , e ∧ f = ef , Ce = 1− e with respect to
the lattice operations and the complement Ce in ∇.

The commutative unital algebra A is called regular if the following equivalent
conditions hold [12, §2, item 4]:

1. For any a ∈ A there exists b ∈ A such that a = a2b;
2. For any a ∈ A there exists e ∈ ∇ such that aA = eA.
A regular algebra A is a regular semigroup with respect to the multiplication

operation [3, Ch. I, §1.9]. In this case all idempotents in A commute pairwisely.
Therefore, A is a commutative inverse semigroup, i.e. for any a ∈ A there exists
an unique element i(a) ∈ A, which is an unique solution of the system: a2x = a,
ax2 = x [3, Ch. I, §1.9]. The element i(a) is called an inversion of the element a.
Obviously, ai(a) ∈ ∇ for any a ∈ A. In this case the map i : A → A is a bijection
and an automorphism (by multiplication) in semigroup A. Moreover, i(i(a)) = a and
i(g) = g for all a ∈ A, g ∈ ∇.

Let A be a commutative unital regular algebra and ∇ be a Boolean algebra of all
idempotents in A. Idempotent s(a) ∈ ∇ is called the support of an element a ∈ A if
s(a)a = a and ga = a, g ∈ ∇ imply s(a) ≤ g. It is clear that s(a) = ai(a) = s(i(a)).
In particular, s(e) = ei(e) = e for any e ∈ ∇.
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It is easy to show that supports of elements in a commutative regular unital
algebra A satisfy the following properties:

Proposition 1. Let a, b ∈ A, then
(i). s(ab) = s(a)s(b), in particular, ab = 0⇔ s(a)s(b) = 0;
(ii). If ab = 0, then i(a+ b) = i(a) + i(b) and s(a+ b) = s(a) + s(b).

Two elements a and b in a commutative unital regular algebra A are called disjoint
elements, if ab = 0, which equivalent to the equality s(a)s(b) = 0 (see Proposition
1 (i)). If the Boolean algebra ∇ of all idempotents in A is complete, a ∈ A and
r(a) = sup{e ∈ ∇ : ae = 0}, then

s(a)r(a) = s(a) ∧ r(a) = s(a) ∧ (sup{e : ae = 0}) =

= sup{s(a) ∧ e : ae = 0} = sup{s(a)e : ae = 0} = 0.

Hence s(a) ≤ 1− r(a). If q = (1− r(a)− s(a)), then aq = as(a)q = 0, thus q ≤ r(a).
This yields that q = 0, i.e. s(a) = 1− r(a). This implies the following

Proposition 2. Let A be a commutative unital regular algebra and let ∇ be complete
Boolean algebra of idempotents in A. If {ei}i∈I is a partition of unity in ∇, a, b ∈ A
and aei = bei for all i ∈ I, then a = b.

Proof. Since (a− b)ei = 0 for any i ∈ I, then 1 = sup
i∈I

ei ≤ r(a− b), i.e. r(a− b) = 1.

Hence, s(a− b) = 0, i.e. a = b.

Commutative unital regular algebra A is called laterally complete (l-complete) if
the Boolean algebra of its idempotents is complete and for any set {ai}i∈I of pairwise
disjoint elements in A there exists an element a ∈ A such that as(ai) = ai for all
i ∈ I. The element a ∈ A such that as(ai) = ai, i ∈ I, in general, is not uniquely
determined. However, by Proposition 2, it follows that the element a is unique in the
case, when sup

i∈I
s(ai) = 1. In general case, due to the equality as(ai) = ai = bs(ai)

for all i ∈ I and a, b ∈ A, it follows that a supi∈I s(ai) = b supi∈I s(ai).
Let us give examples of l-complete and not l-complete commutative regular alge-

bras. Let ∆ be an arbitrary set andK∆ be a Cartesian product of ∆ copies of the field
K, i.e. the set of all K-valued functions on ∆. The set K∆ is a commutative unital
regular algebra with respect to pointwise algebraic operations, moreover, the Boolean
algebra ∇ of all idempotents in K∆ is an isomorphic atomic Boolean algebra of all
subsets in ∆. In particular ∇ is complete Boolean algebra. If {aj = (α

(j)
q )q∈∆, j ∈ J}

is a family of pairwise disjoint elements in K∆, then setting ∆j = {q ∈ ∆ : α
(j)
q 6= 0},

j ∈ J and a = (αq)q∈∆ ∈ K∆, where αq = α
(j)
q for any q ∈ ∆j, j ∈ J , and αq = 0 for

q ∈ ∆ \
⋃
j∈J

∆j, we obtain that as(aj) = aj for all j ∈ J . Hence, K∆ is a l-complete

algebra.
Now let A be an arbitrary commutative unital regular algebra over the field K

and ∇ be a Boolean algebra of all idempotents in A. An element a ∈ A is called a
step element in A if it has the following form a =

∑n
k=1 λkek, here λk ∈ K, ek ∈ ∇,
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k = 1, . . . , n. The set K(∇) of all step elements is the smallest subalgebra in A,
which contains ∇. Any nonzero element a =

∑n
k=1 λkek in K(∇) can be represented

as a =
∑m

l=1 αlgl, here gl ∈ ∇, glgk = 0 when l 6= k, 0 6= αk ∈ K, l, k = 1, . . . ,m.
Setting b =

∑m
l=1 α

−1
l gl ∈ K(∇), we obtain a2b = a. Hence, K(∇) is a regular

subalgebra in A. Since ∇ ⊂ K(∇), the Boolean algebra of idempotents in K(∇)
coincides with ∇. Assume that card (K) = ∞ and card (∇) = ∞. We choose
a countable set K0 = {λn}∞n=1 of pairwise different nonzero elements in K and a
countable set {en}∞n=1 of nonzero pairwise disjoint elements in ∇. Let us consider
a set {λnen}∞n=1 of pairwise disjoint elements in K(∇). Assume that there exists
b =

∑m
l=1 αlgl ∈ K(∇), 0 6= αl ∈ K, gl ∈ ∇, glgk = 0 and l 6= k, l, k = 1, . . . ,m,

such that ben = bs(λnen) = λnen. In this case for any positive integer n there exists
integer l(n), such that αl(n)gl(n)en = λngl(n)en 6= 0, i.e. αl(n) = λn. This implies that
the set {λn}∞n=1 is finite, which is not true. Hence, the commutative unital regular
algebra K(∇) is not l-complete.

Let ∇ be complete Boolean algebra and let Q(∇) be a Stone compact correspond-
ing to ∇. An algebra C∞(Q(∇)) of all continuous functions a : Q(∇)→ [−∞,+∞],
taking the values ±∞ only on nowhere dense sets in Q(∇) [9, 1.4.2], is an important
example of a l-complete commutative regular algebra.

An element e ∈ C∞(Q(∇)) is an idempotent if and only if e(t) = χV (t), t ∈ Q(∇),
for some clopen set V ⊂ Q(∇), where

χV (t) =

{
1, t ∈ V ;
0, t /∈ V ,

i.e. χV (t) is a characteristic function of the set V . In particular, the Boolean algebra
∇ can be identified with the Boolean algebra of all idempotents in algebra C∞(Q(∇)).

If a ∈ C∞(Q(∇)), then G(a) = {t ∈ Q(∇) : 0 < |a(t)| < +∞} is open set in the
Stone compact set Q(∇). Hence, the closure V (a) = G(a) in Q(∇) of the set G(a)
is an clopen set, i.e. χV (a) is an idempotent in the algebra C∞(Q(∇)). We consider
a continuous function b(t), given on the dense open set G(a) ∪ (Q(∇) \ V (a)) and
defines by the following equation

b(t) =

{ 1
a(t)

, t ∈ G(a),
0, t ∈ Q(∇) \ V (a).

This function uniquely extends to a continuous function defined on Q(∇) with values
in [−∞,+∞] [14, Ch.5, §2] (we also denote this extension by b(t)). Since ab = χV (a),
then a2b = a and s(a) = χV (a). Hence, C∞(Q(∇)) is a commutative unital regular
algebra over the field of real numbers R. In this case, the Boolean algebra of all
idempotents in C∞(Q(∇)) is complete.

It is known that (see, for example [9, 1.4.2]) C∞(Q(∇)) is an extended complete
vector lattice. In particular, for any set {aj}j∈J of pairwise disjoint positive elements
in C∞(Q(∇)) there exists the least upper bound a = supj∈J aj and as(aj) = aj for
all j ∈ J . It follows that the commutative regular algebra C∞(Q(∇)) is laterally
complete.
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In the case, when ∇ is a complete atomic Boolean algebra and ∆ is the set of all
atoms in ∇, then C∞(Q(∇)) is isomorphic to the algebra R∆.

The following examples of laterally complete commutative regular algebras are
variants of algebras C∞(Q(∇)) for any topological fields, in particular, for the field
Qp of p-adic numbers.

Let K be an arbitrary field and t be the Hausdorff topology on K. If operations
α → (−α), α → α−1 and operations (α, β) → α + β, (α, β) → αβ, α, β ∈ K, are
continuous with respect to this topology, we say that (K, t) is a topological field (see,
for example, [13, Ch.20, §165]).

Let (K, t) be a topological field, (X, τ) be any topological space and ∇(X) be a
Boolean algebra of all clopen subsets in (X, τ). A map ϕ : (X, τ) → (K, t) is called
almost continuous if there exists a dense open set U in (X, τ) such that the restriction
ϕ|U : U → (K, t) of the map ϕ on the subset U is continuous in U . The set of all
almost continuous maps from (X, τ) to (K, t) we denote by AC(X,K).

We define pointwise algebraic operations in AC(X,K) by

(ϕ+ ψ)(t) = ϕ(t) + ψ(t);

(αϕ)(t) = αϕ(t);

(ϕ · ψ)(t) = ϕ(t)ψ(t)

for all ϕ, ψ ∈ AC(X,K), α ∈ K, t ∈ X.
Since an intersection of two dense open sets in (X, τ) is a dense open set in

(X, τ), then ϕ + ψ, ϕ · ψ ∈ AC(X,K) for any ϕ, ψ ∈ AC(X,K). Obviously, αϕ ∈
AC(X,K) for all ϕ ∈ AC(X,K), α ∈ K. It can be easily checked that AC(X,K) is
a commutative algebra over K with the unit element 1(t) = 1K for all t ∈ X, where
1K is the unit element of K. In this case, the algebra C(X,K) of all continuous maps
from (X, τ) to (K, t) is a subalgebra in AC(X,K).

In the algebra AC(X,K) consider the following ideal

I0(X,K) = {ϕ ∈ AC(X,K) : interior of preimage ϕ−1(0) is dense in (X, τ)}.

By C∞(X,K) denote the quotient algebra AC(X,K)/I0(X,K) and by π :
AC(X,K) → AC(X,K)/I0(X,K) denote the corresponding canonical homomor-
phism.

Theorem 1. The quotient algebra C∞(X,K) is a commutative unital regular algebra
over the field K. Moreover, if (X, τ) is a Stone compact set, then algebra C∞(X,K)
is laterally complete, and the Boolean algebra ∇ of all its idempotents is isomorphic
to the Boolean algebra ∇(X).

Proof. Since AC(X,K) is a commutative unital algebra over K, then C∞(X,K) is
also a commutative unital algebra over K with unit element π(1). Now we show that
C∞(X,K) is a regular algebra, i.e. for any ϕ ∈ AC(X,K) there exists ψ ∈ AC(X,K),
such that π2(ϕ)π(ψ) = π(ϕ).

We fix an element ϕ ∈ AC(X,K) and choose a dense open set U ∈ τ , such that
the restriction ϕ|U : U → (K, t) is continuous. Since K \ {0} is an open set in (K, t),
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then the set V = U ∩ϕ−1(K \ {0}) is open in (X, τ). Clearly, the set W = X \ V τ is
also open in (X, τ), in this case V ∪W is a dense open set in (X, τ).

We define a map ψ : X → K, as follow: ψ(x) = (ϕ(x))−1 if x ∈ V , and ψ(x) = 0
if x ∈ X \ V . It is not hard to prove that ψ ∈ AC(X,K) and ϕ2ψ − ϕ ∈ I0(X,K),
i.e. π2(ϕ)π(ψ) = π(ϕ). Hence, the algebra C∞(X,K) is regular.

For any clopen set U ∈ ∇(X) its characteristic function χU belongs to AC(X,K),
in this case, π(χU)2 = π(χ2

U) = π(χU), i.e. π(χU) is an idempotent in the algebra
C∞(X,K).

Assume that (X, τ) is a Stone compact and we show that for any idempotent
e ∈ C∞(X,K) there exists U ∈ ∇(X) such that e = π(χU).

If e ∈ ∇, then e = π(ϕ) for some ϕ ∈ AC(X,K) and π(ϕ) = e2 = π(ϕ2),
i.e. (ϕ2 − ϕ) ∈ I0(X,K). Hence, there exists a dense open set V in X such that
ϕ2(t) − ϕ(t) = 0 for all t ∈ V . Denote by U a dense open set in X such that
the restriction ϕ|U : U → K is continuous. Put U0 = ϕ−1({0}) ∩ (U ∩ V ), U1 =
ϕ−1({1K}) ∩ (U ∩ V ). Since U0 ∩ U1 = ∅, U0 ∪ U1 = U ∩ V ∈ τ and the sets U0, U1

are closed in U ∩ V with respect to the topology induced from (X, τ), it follows that
U0, U1 ∈ τ . Hence, the set Uϕ = U1 belongs to the Boolean algebra ∇(X), besides,
Uϕ ∩ U0 = ∅.

Since U0 ∪ U1 = U ∩ V is a dense open set in (X, τ) and ϕ(t) = χUϕ(t) for all
t ∈ U0 ∪ U1, it follows that e = π(ϕ) = π(χUϕ). Thus, the mapping Φ : ∇(X) → ∇
defined by the equality Φ(U) = π(χU), U ∈ ∇(X), is a surjection.

Moreover, for U, V ∈ ∇(X) the following equalities hold

Φ(U ∩ V ) = π(χU∩V ) = π(χUχV ) = π(χU)π(χV ) = Φ(U)Φ(V ),

Φ(X \ U) = π(χX\U) = π(1− χU) = Φ(X)− Φ(U).

Furthermore, the equality Φ(U) = Φ(V ) implies that the continuous mappings χU
and χV coincide on a dense set in X. Therefore χU = χV , that is U = V .

Hence, Φ is an isomorphism from the Boolean algebra ∇(X) onto the Boolean
algebra ∇ of all idempotents from C∞(X,K), in particular, ∇ is a complete Boolean
algebra.

Finally, to prove l-completeness of the algebra C∞(X,K) we show that for any
family {π(ϕi) : ϕ ∈ AC(X,K)}i∈I of nonzero pairwise disjoint elements in C∞(X,K)
there exists ϕ ∈ AC(X,K) such that π(ϕ)s(π(ϕi)) = π(ϕi) for all i ∈ I. For any
i ∈ I we choose a dense open set Ui such that the restriction ϕi|Ui

is continuous and
put Vi = Ui ∩ ϕ−1

i (K \ {0}), i ∈ I. It is not hard to prove that s(π(ϕi)) = Φ(Vi).
In particular, Vi ∩ Vj = ∅ when i 6= j, i, j ∈ I. Define the mapping ϕ : X → K, as

follows ϕ(t) = ϕi(t) if t ∈ Vi and ϕ(t) = 0 if t ∈ X \
(⋃
i∈I
Vi

)
. Clearly, ϕ ∈ AC(X,K)

and π(ϕ)s(π(ϕi)) = π(ϕχVi) = π(ϕiχVi) = π(ϕi) for all i ∈ I.
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3 Laterally complete regular modules
Let A be a laterally complete commutative regular algebra and let ∇ be a Boolean
algebra of all idempotents in A. Let X be a left A-module with algebraic operations
x + y and ax, x, y ∈ X, a ∈ A. Since the algebra A is commutative, then a left
A-module X becomes a right A-module, if we put xa := ax, x ∈ X, a ∈ A. Hence,
we can assume, that X is a bimodule over A, where the following equality ax = xa
holds for any x ∈ X, a ∈ A. Next, an A-bimodule X we shall call an A-module.

An A-module X is called faithful, if for any nonzero e ∈ ∇ there exists x ∈ X
such that ex 6= 0. Clearly, for a faithful A-module X the set Xe := eX is a faithful
Ae-module for any 0 6= e ∈ ∇, where Ae := eA.

An A-module X is said to be a regular module, if for any x ∈ A the condition
ex = 0, for all e ∈ L ⊂ ∇, implies (supL)x = 0. In this case, for x ∈ X the
idempotent s(x) = 1 − sup{e ∈ ∇ : ex = 0} is called the support of an element x.
In case, when X = A, the notions of support of an element in an A-module X and
of support of an element in A coincide. If X is a regular A-module, then Xe is also
a regular Ae-module for any nonzero e ∈ ∇.

We need the following properties of supports of elements in a regular A-module
X.

Proposition 3. Let X be a regular A-module, x, y ∈ X, a ∈ A. Then
(i). s(x)x = x;
(ii). if e ∈ ∇ and ex = x, then e ≥ s(x);
(iii). s(ax) = s(a)s(x).

Proof. (i). If r(x) = sup{e ∈ ∇ : ex = 0}, then s(x) = 1 − r(x) and r(x)x = 0.
Hence, x = (s(x) + r(x))x = s(x)x.

(ii). As ex = x, then (1 − e)x = 0, and therefore 1 − e ≤ r(x). This implies
e ≥ 1− r(x) = s(x).

(iii). Since (s(a)s(x)) · (ax) = (s(a)a) · (s(x)x) = ax, then by (ii) we have
s(ax) ≤ s(a)s(x). If g = s(a)s(x)− s(ax) 6= 0, then ga 6= 0, g ≤ s(a) and gs(ax) = 0.
Hence gax = 0 and 0 = i(ga)(gax) = (i(g)i(a)ga)x = (gi(a)a)x = gs(a)x = gx 6= 0.
This contradiction implies g = 0, i.e. s(ax) = s(a)s(x).

We say that a regular A-module X is laterally complete (l-complete), if for any
set {xi}i∈I ⊂ X and for any partition {ei}i∈I of unity of the Boolean algebra ∇
there exists x ∈ X such that eix = eixi for all i ∈ I. In this case, the element x
is called mixing of the set {xi}i∈I with respect to the partition of unity {ei}i∈I and
denote by mix

i∈I
(eixi). Mixing mix

i∈I
(eixi) is defined uniquely, whereas the equalities

eix = eixi = eiy, x, y ∈ X, i ∈ I, implies ei(x−y) = 0 for all i ∈ I, and, by regularity
of the A-module X, we obtain x = y.

Let {xi}i∈I ⊂ E ⊂ X and let {ei}i∈I be a partition of unity in ∇. The set of all
mixings mix

i∈I
(eixi) is called a cyclic hull of the set E in X and denotes by mix(E).

Obviously, the inclusion E ⊂ mix(E) is always true. If E = mix(E), then E is called
a cyclic set in X (compare with [8], 1.1.2).
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Thus, a regular A-module X is a l-complete A-module if and only if X is a
cyclic set. In particular, in any l-complete A-module X its submodule Xe is also a
l-complete Ae-module for any nonzero idempotent e in A.

We need the following properties of cyclic hulls of sets.

Proposition 4. Let X be a l-complete A-module and let E be a nonempty subset in
X, a ∈ A. Then

(i). mix(mix(E)) = mix(E);
(ii). mix(aE) = amix(E);
(iii). If Y is an A-submodule in X, then mix(Y ) is a l-complete A-submodule in

X;
(iv). If U is an isomorphism from A-module X onto A-module Z, then Z is a

l-complete A-module and mix(U(E)) = U(mix(E)).

Proof. (i). It is sufficient to show that mix(mix(E)) ⊂ mix(E). If x ∈ mix(mix(E)),
then x = mix

i∈I
(eixi), where xi ∈ mix(E), i ∈ I. Since xi ∈ mix(E), then xi =

mix
j∈J(i)

(e
(i)
j x

(i)
j ), where x(i)

j ∈ E, j ∈ J(i) and {e(i)
j }j∈J(i) is a partition of unity in the

Boolean algebra ∇ for all i ∈ I. Fix i ∈ I and put g(i)
j := eie

(i)
j . It is clear that

{g(i)
j }j∈J(i) is a partition of the idempotent ei. Hence, {g(i)

j }j∈J(i),i∈I is a partition of
unity 1. Besides, g(i)

j x = g
(i)
j eix = g

(i)
j eixi = eie

(i)
j xi = eie

(i)
j x

(i)
j = g

(i)
j x

(i)
j . This yields

that x = mix
j∈J(i),i∈I

(g
(i)
j x

(i)
j ) ∈ mix(E).

(ii). If x ∈ mix(aE), then x = mix
i∈I

(eiayi), where yi ∈ E, i ∈ I. Since X is a

l-complete A-module, then there exists y = mix
i∈I

(eiyi) ∈ mix(E) and eix = aeiyi =

ei(ay) for all i ∈ I. Hence, ei(x− ay) = 0, and regularity of the A-module X implies
the equality x = ay. Thus, mix(aE) ⊂ amix(E).

Conversely, if x ∈ amix(E), then x = az, where z = mix
i∈I

(eizi), zi ∈ E, i ∈ I.

Since azi ∈ aE and eix = ei(az) = eiaeiz = ei(azi) for all i ∈ I, we have that
x = mix

i∈I
(ei(azi)) ∈ mix(aE). Hence, amix(E) ⊂ mix(aE).

(iii). Let x, y ∈ mix(Y ), x = mix
i∈I

(eixi), y = mix
j∈J

(gjyj), where xi, yj ∈ Y , i ∈ I,
j ∈ J , {ei}i∈I , {gj}j∈J are partitions of unity in ∇. Clearly, that pij = eigj, i ∈ I,
j ∈ J , is also a partition of unity in ∇ and pij(x+y) = pij(xi+yj), where xi+yj ∈ Y
for all i ∈ I, j ∈ J . This means that (x+ y) ∈ mix(Y ).

Since aY ⊂ Y , then by (ii) we have that ax ∈ amix(Y ) = mix(aY ) ⊂ mix(Y ).
Hence, mix(Y ) is an A-submodule in X, and by regularity of the A-module X, it is
a regular A-module. The equality mix(Y ) = mix(mixY ) (see (i)) implies that mixY
is a l-complete A-module.

(iv). If U(x) = y ∈ Z, x ∈ X, ∅ 6= L ⊂ ∇ and ey = 0 for all e ∈ L, then
U(ex) = eU(x) = ey = 0. Since U is a bijection, then ex = 0 for any e ∈ L. By
regularity of the A-module X, we have that (supL)x = 0, and, therefore, (supL)y =
U((supL)x) = 0. Hence, Z is a regular A-module. In the same way we show that Z
is a l-complete A-module and the equality mix(U(E)) = U(mix(E)) holds.
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Let ∇ be an arbitrary complete Boolean algebra. For any nonzero element e ∈ ∇
we put ∇e = {q ∈ ∇ : q ≤ e}. The set ∇e is a Boolean algebra with the unity e with
respect to partial order, induced from ∇.

We say that a set B in ∇ is a minorant subset for nonempty set E ⊂ ∇, if for any
nonzero e ∈ E there exists nonzero q ∈ B such that q ≤ e. We need the following
property of complete Boolean algebras.

Theorem 2. ([9], 1.1.6) If ∇ is a complete Boolean algebra, e is a nonzero element
in ∇ and B is a minorant subset for ∇e, then there exists a disjoint subset L ⊂ B
such that supL = e.

We say that a Boolean algebra∇ has a countable type or is σ-finite, if any nonfinite
family of nonzero pairwise disjoint elements in ∇ is a countable set. A complete
Boolean algebra ∇ is called multi-σ-finite, if for any nonzero element g ∈ ∇ there
exists 0 6= e ∈ ∇ such that e ≤ g and the Boolean algebra ∇e has a countable type.
By theorem 2, a multi-σ-finite Boolean algebra ∇ always has a partition {ei}i∈I of
unity 1 such that the Boolean algebra ∇ei has a countable type for all i ∈ I.

By theorem 2 we set the following useful properties of l-complete A-modules.

Proposition 5. Let X be an arbitrary l-complete A-module and ∇ be a complete
Boolean algebra of all idempotents in A. Then

(i). If X is a faithful A-module, then there exists an element x ∈ X such that
s(x) = 1;

(ii). If Y is a l-complete A-submodule in a regular A-module X and for any
nonzero e ∈ ∇ there exists a nonzero ge ∈ ∇ such that ge ≤ e and geY = geX, then
Y = X.

Proof is in the same way as the proof of Proposition 2.4 in [2].
We need a representation of a faithful l-complete A-module X as the Cartesian

product of a faithful l-complete Aei-modules family, where {ei}i∈I is a partition of
unity in the Boolean algebra ∇ of all idempotents in A. In the Cartesian product∏

i∈I

eiX = {{yi}i∈I : yi ∈ eiX}

of A-submodules eiX we consider coordinate-wise algebraic operations. It is clear
that

∏
i∈I
eiX is a faithful l-complete A-module. We define a map U : X →

∏
i∈I
eiX

given by U(x) = {eix}i∈I . Obviously, U is a linear mapping from X onto
∏
i∈I
eiX. If

U(x) = U(y), then eix = eiy for all i ∈ I, and by regularity of the A-module X, it
follows that x = y.

If z = {xi}i∈I ∈
∏
i∈I
eiX, where xi ∈ eiX ⊂ X, i ∈ I, then l-completeness of the

A-module X implies that there exists an element x ∈ X such that eix = eixi = xi
for all i ∈ I. Hence, U(x) = z, i.e. U is a surjection.

Thus, the following proposition holds.
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Proposition 6. If X is a faithful l-complete A-module, {ei}i∈I is a partition of
unity of the Boolean algebra ∇ of all idempotents in A, then

∏
i∈I
eiX is also a faithful

l-complete A-module and U is an isomorphism from X onto
∏
i∈I
eiX.
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