Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

Volume 6 | Issue 1

Article 6

12-4-2023

Laterally complete regular modules

Jasurbek Karimov National University of Uzbekistan, karimovja@mail.ru

Follow this and additional works at: https://bulletin.nuu.uz/journal

Part of the Analysis Commons

Recommended Citation

Karimov, Jasurbek (2023) "Laterally complete regular modules," *Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences*: Vol. 6: Iss. 1, Article 6. DOI: https://doi.org/10.56017/2181-1318.1271

This Article is brought to you for free and open access by Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences. It has been accepted for inclusion in Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences by an authorized editor of Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences. For more information, please contact karimovja@mail.ru.

LATERALLY COMPLETE REGULAR MODULES

JASURBEK KARIMOV

National University of Uzbekistan, Tashkent, Uzbekistan e-mail: karimovja@mail.ru, ja.karimov@nuu.uz

Abstract

Let \mathcal{A} be a laterally complete commutative regular algebra and X be a laterally complete \mathcal{A} -module. In this paper we introduce a notion of passport $\Gamma(X)$ for X, which consist of uniquely defined partition of unity in the Boolean algebra of idempotents in \mathcal{A} and the set of pairwise different cardinal numbers. It is proved that \mathcal{A} -modules X and Y are isomorphic if and only if $\Gamma(X) = \Gamma(Y)$.

Keywords: Commutative regular algebra, homogeneous module, finite dimensional module

Mathematics Subject Classification (2010): 13C05, 16D70.

1 Introduction

J. Kaplansky [4] introduced a class of AW^* -algebras to describe C^* -algebras, which is close to von Neumann algebras by their algebraic and order structure. The class of AW^* -algebras became a subject of many researches in the operator theory (see review in [1]). One of the important results in this direction is the realization of an arbitrary AW^* -algebra M of type I as a *-algebra of all linear bounded operators, which act in a special Banach module over the center Z(M) of the algebra M [5]. The Banach Z(M)-valued norm in this module is generated by the scalar product with values in the commutative AW^* -algebra Z(M). Later, these modules were called Kaplansky-Hilbert modules (KHM). Detailed exposition of many useful properties of KHM is given, for example, in ([9], 7.4). One of the important properties is a representation of an arbitrary Kaplansky-Hilbert module as a direct sum of homogeneous KHM ([6], [9], 7.4.7).

Development of the noncommutative integration theory stimulated an interest to the different classes of algebras of unbounded operators, in particular, to the *algebras LS(M) of locally measurable operators, affiliated with von Neumann algebras or AW^* -algebras M. If M is a von Neumann algebra, then the center Z(LS(M))in the algebra LS(M) identifies with the algebra $L^0(\Omega, \Sigma, \mu)$ of all classes of equal almost everywhere measurable complex functions, defined on some measurable space (Ω, Σ, μ) with a complete locally finite measure μ ([11], 2.1, 2.2). If M is an AW^* algebra, then Z(LS(M)) is an extended f-algebra $C_{\infty}(Q)$, where Q is the Stone compact coresponding to the Boolean algebra of central projectors in M [1]. The problem (like the one in the work of J. Kaplansky [5] for AW^* -algebras) on possibility of realization of *-algebras LS(M), in the case, when M has the type I, as *-algebras of linear $L^0(\Omega, \Sigma, \mu)$ -bounded (respectively, $C_{\infty}(Q)$ -bounded) operators, which act in corresponding KHM over the $L^0(\Omega, \Sigma, \mu)$ or over the $C_{\infty}(Q)$ naturally arises. In order to solve this problem it is necessary to construct corresponding theory of KHM over the algebras $L^0(\Omega, \Sigma, \mu)$ and $C_{\infty}(Q)$. In a particular case of KHM over the algebras $L^0(\Omega, \Sigma, \mu)$ this problem is solved in [7], where the decomposition of KHM over $L^0(\Omega, \Sigma, \mu)$ as a direct sum of homogeneous KHM is given. Similar decomposition as a direct sum of strictly γ -homogeneous modules is given in the paper [2] for arbitrary regular laterally complete modules over the algebra $C_{\infty}(Q)$ (the definitions see in the Section 3 below).

The algebra $C_{\infty}(Q)$ is an example of a commutative unital regular algebra over the field of real numbers. In this algebra the following property of lateral completeness holds: for any set $\{a_i\}_{i\in I}$ of pairwise disjoint elements in $C_{\infty}(Q)$ there exists an element $a \in C_{\infty}(Q)$ such that $as(a_i) = a_i$ for all $i \in I$, where $s(a_i)$ is a support of the element a_i (the definitions see in the Section 2 below). This property of $C_{\infty}(Q)$ plays a crucial role in classification of regular laterally complete $C_{\infty}(Q)$ -mpdules [2]. Thereby, it is natural to consider the class of laterally complete commutative unital regular algebras \mathcal{A} over arbitrary fields and to obtain variants of structure theorems for modules over such algebras. Current work is devoted to solving this problem. For every faithful regular laterally complete \mathcal{A} -module X the concept of passport $\Gamma(X)$, which consist of the uniquely defined partition of unity in the Boolean algebra of idempotents in \mathcal{A} and the set of pairwise different cardinal numbers is constructed. It is proved, that the equality of passports $\Gamma(X)$ and $\Gamma(Y)$ is necessary and sufficient condition for isomorphism of \mathcal{A} -modules X and Y.

2 Laterally complete commutative regular algebras

Let \mathcal{A} be a commutative algebra over the field K with the unity $\mathbf{1}$ and $\nabla = \{e \in \mathcal{A} : e^2 = e\}$ be a set of all idempotents in \mathcal{A} . For all $e, f \in \nabla$ we write $e \leq f$ if ef = e. It is well known (see, for example [10, Prop. 1.6]) that this binary relation is partial order in ∇ and ∇ is a Boolean algebra with respect to this order. Moreover, we have the following equalities: $e \vee f = e + f - ef$, $e \wedge f = ef$, $Ce = \mathbf{1} - e$ with respect to the lattice operations and the complement Ce in ∇ .

The commutative unital algebra \mathcal{A} is called regular if the following equivalent conditions hold [12, §2, item 4]:

1. For any $a \in \mathcal{A}$ there exists $b \in \mathcal{A}$ such that $a = a^2 b$;

2. For any $a \in \mathcal{A}$ there exists $e \in \nabla$ such that $a\mathcal{A} = e\mathcal{A}$.

A regular algebra \mathcal{A} is a regular semigroup with respect to the multiplication operation [3, Ch. I, §1.9]. In this case all idempotents in \mathcal{A} commute pairwisely. Therefore, \mathcal{A} is a commutative inverse semigroup, i.e. for any $a \in \mathcal{A}$ there exists an unique element $i(a) \in \mathcal{A}$, which is an unique solution of the system: $a^2x = a$, $ax^2 = x$ [3, Ch. I, §1.9]. The element i(a) is called an inversion of the element a. Obviously, $ai(a) \in \nabla$ for any $a \in \mathcal{A}$. In this case the map $i : \mathcal{A} \to \mathcal{A}$ is a bijection and an automorphism (by multiplication) in semigroup \mathcal{A} . Moreover, i(i(a)) = a and i(g) = g for all $a \in \mathcal{A}$, $g \in \nabla$.

Let \mathcal{A} be a commutative unital regular algebra and ∇ be a Boolean algebra of all idempotents in \mathcal{A} . Idempotent $s(a) \in \nabla$ is called the support of an element $a \in \mathcal{A}$ if s(a)a = a and $ga = a, g \in \nabla$ imply $s(a) \leq g$. It is clear that s(a) = ai(a) = s(i(a)). In particular, s(e) = ei(e) = e for any $e \in \nabla$. It is easy to show that supports of elements in a commutative regular unital algebra \mathcal{A} satisfy the following properties:

Proposition 1. Let $a, b \in A$, then

(i). s(ab) = s(a)s(b), in particular, $ab = 0 \Leftrightarrow s(a)s(b) = 0$; (ii). If ab = 0, then i(a + b) = i(a) + i(b) and s(a + b) = s(a) + s(b).

Two elements a and b in a commutative unital regular algebra \mathcal{A} are called *disjoint* elements, if ab = 0, which equivalent to the equality s(a)s(b) = 0 (see Proposition 1 (i)). If the Boolean algebra ∇ of all idempotents in \mathcal{A} is complete, $a \in \mathcal{A}$ and $r(a) = \sup\{e \in \nabla : ae = 0\}$, then

$$s(a)r(a) = s(a) \wedge r(a) = s(a) \wedge (\sup\{e : ae = 0\}) =$$

= sup{s(a) \land e : ae = 0} = sup{s(a)e : ae = 0} = 0.

Hence $s(a) \leq 1 - r(a)$. If q = (1 - r(a) - s(a)), then aq = as(a)q = 0, thus $q \leq r(a)$. This yields that q = 0, i.e. s(a) = 1 - r(a). This implies the following

Proposition 2. Let \mathcal{A} be a commutative unital regular algebra and let ∇ be complete Boolean algebra of idempotents in \mathcal{A} . If $\{e_i\}_{i \in I}$ is a partition of unity in ∇ , $a, b \in \mathcal{A}$ and $ae_i = be_i$ for all $i \in I$, then a = b.

Proof. Since
$$(a-b)e_i = 0$$
 for any $i \in I$, then $\mathbf{1} = \sup_{i \in I} e_i \leq r(a-b)$, i.e. $r(a-b) = \mathbf{1}$.
Hence, $s(a-b) = 0$, i.e. $a = b$.

Commutative unital regular algebra \mathcal{A} is called *laterally complete* (*l-complete*) if the Boolean algebra of its idempotents is complete and for any set $\{a_i\}_{i\in I}$ of pairwise disjoint elements in \mathcal{A} there exists an element $a \in \mathcal{A}$ such that $as(a_i) = a_i$ for all $i \in I$. The element $a \in \mathcal{A}$ such that $as(a_i) = a_i$, $i \in I$, in general, is not uniquely determined. However, by Proposition 2, it follows that the element a is unique in the case, when $\sup_{i\in I} s(a_i) = 1$. In general case, due to the equality $as(a_i) = a_i = bs(a_i)$ for all $i \in I$ and $a, h \in \mathcal{A}$ it follows that $a \sup_{i\in I} s(a_i) = b \sup_{i\in I} s(a_i)$

for all $i \in I$ and $a, b \in \mathcal{A}$, it follows that $a \sup_{i \in I} s(a_i) = b \sup_{i \in I} s(a_i)$.

Let us give examples of *l*-complete and not *l*-complete commutative regular algebras. Let Δ be an arbitrary set and K^{Δ} be a Cartesian product of Δ copies of the field K, i.e. the set of all K-valued functions on Δ . The set K^{Δ} is a commutative unital regular algebra with respect to pointwise algebraic operations, moreover, the Boolean algebra ∇ of all idempotents in K^{Δ} is an isomorphic atomic Boolean algebra of all subsets in Δ . In particular ∇ is complete Boolean algebra. If $\{a_j = (\alpha_q^{(j)})_{q \in \Delta}, j \in J\}$ is a family of pairwise disjoint elements in K^{Δ} , then setting $\Delta_j = \{q \in \Delta : \alpha_q^{(j)} \neq 0\}$, $j \in J$ and $a = (\alpha_q)_{q \in \Delta} \in K^{\Delta}$, where $\alpha_q = \alpha_q^{(j)}$ for any $q \in \Delta_j$, $j \in J$, and $\alpha_q = 0$ for $q \in \Delta \setminus \bigcup_{j \in J} \Delta_j$, we obtain that $as(a_j) = a_j$ for all $j \in J$. Hence, K^{Δ} is a *l*-complete algebra.

Now let \mathcal{A} be an arbitrary commutative unital regular algebra over the field Kand ∇ be a Boolean algebra of all idempotents in \mathcal{A} . An element $a \in \mathcal{A}$ is called a step element in \mathcal{A} if it has the following form $a = \sum_{k=1}^{n} \lambda_k e_k$, here $\lambda_k \in K$, $e_k \in \nabla$, $k = 1, \ldots, n$. The set $K(\nabla)$ of all step elements is the smallest subalgebra in \mathcal{A} , which contains ∇ . Any nonzero element $a = \sum_{k=1}^{n} \lambda_k e_k$ in $K(\nabla)$ can be represented as $a = \sum_{l=1}^{m} \alpha_l g_l$, here $g_l \in \nabla$, $g_l g_k = 0$ when $l \neq k, 0 \neq \alpha_k \in K, l, k = 1, \ldots, m$. Setting $b = \sum_{l=1}^{m} \alpha_l^{-1} g_l \in K(\nabla)$, we obtain $a^2 b = a$. Hence, $K(\nabla)$ is a regular subalgebra in \mathcal{A} . Since $\nabla \subset K(\nabla)$, the Boolean algebra of idempotents in $K(\nabla)$ coincides with ∇ . Assume that card $(K) = \infty$ and card $(\nabla) = \infty$. We choose a countable set $K_0 = \{\lambda_n\}_{n=1}^{\infty}$ of pairwise different nonzero elements in K and a countable set $\{e_n\}_{n=1}^{\infty}$ of nonzero pairwise disjoint elements in ∇ . Let us consider a set $\{\lambda_n e_n\}_{n=1}^{\infty}$ of pairwise disjoint elements in $K(\nabla)$. Assume that there exists $b = \sum_{l=1}^{m} \alpha_l g_l \in K(\nabla), 0 \neq \alpha_l \in K, g_l \in \nabla, g_l g_k = 0$ and $l \neq k, l, k = 1, \ldots, m$, such that $be_n = bs(\lambda_n e_n) = \lambda_n e_n$. In this case for any positive integer n there exists integer l(n), such that $\alpha_{l(n)} g_{l(n)} e_n = \lambda_n g_{l(n)} e_n \neq 0$, i.e. $\alpha_{l(n)} = \lambda_n$. This implies that the set $\{\lambda_n\}_{n=1}^{\infty}$ is finite, which is not true. Hence, the commutative unital regular algebra $K(\nabla)$ is not l-complete.

Let ∇ be complete Boolean algebra and let $Q(\nabla)$ be a Stone compact corresponding to ∇ . An algebra $C_{\infty}(Q(\nabla))$ of all continuous functions $a: Q(\nabla) \to [-\infty, +\infty]$, taking the values $\pm \infty$ only on nowhere dense sets in $Q(\nabla)$ [9, 1.4.2], is an important example of a *l*-complete commutative regular algebra.

An element $e \in C_{\infty}(Q(\nabla))$ is an idempotent if and only if $e(t) = \chi_V(t), t \in Q(\nabla)$, for some clopen set $V \subset Q(\nabla)$, where

$$\chi_V(t) = \begin{cases} 1, & t \in V; \\ 0, & t \notin V, \end{cases}$$

i.e. $\chi_V(t)$ is a characteristic function of the set V. In particular, the Boolean algebra ∇ can be identified with the Boolean algebra of all idempotents in algebra $C_{\infty}(Q(\nabla))$.

If $a \in C_{\infty}(Q(\nabla))$, then $G(a) = \{t \in Q(\nabla) : 0 < |a(t)| < +\infty\}$ is open set in the Stone compact set $Q(\nabla)$. Hence, the closure $V(a) = \overline{G(a)}$ in $Q(\nabla)$ of the set G(a)is an clopen set, i.e. $\chi_{V(a)}$ is an idempotent in the algebra $C_{\infty}(Q(\nabla))$. We consider a continuous function b(t), given on the dense open set $G(a) \cup (Q(\nabla) \setminus V(a))$ and defines by the following equation

$$b(t) = \begin{cases} \frac{1}{a(t)}, & t \in G(a), \\ 0, & t \in Q(\nabla) \setminus V(a). \end{cases}$$

This function uniquely extends to a continuous function defined on $Q(\nabla)$ with values in $[-\infty, +\infty]$ [14, Ch.5, §2] (we also denote this extension by b(t)). Since $ab = \chi_{V(a)}$, then $a^2b = a$ and $s(a) = \chi_{V(a)}$. Hence, $C_{\infty}(Q(\nabla))$ is a commutative unital regular algebra over the field of real numbers **R**. In this case, the Boolean algebra of all idempotents in $C_{\infty}(Q(\nabla))$ is complete.

It is known that (see, for example [9, 1.4.2]) $C_{\infty}(Q(\nabla))$ is an extended complete vector lattice. In particular, for any set $\{a_j\}_{j\in J}$ of pairwise disjoint positive elements in $C_{\infty}(Q(\nabla))$ there exists the least upper bound $a = \sup_{j\in J} a_j$ and $as(a_j) = a_j$ for all $j \in J$. It follows that the commutative regular algebra $C_{\infty}(Q(\nabla))$ is laterally complete. In the case, when ∇ is a complete atomic Boolean algebra and Δ is the set of all atoms in ∇ , then $C_{\infty}(Q(\nabla))$ is isomorphic to the algebra \mathbf{R}^{Δ} .

The following examples of laterally complete commutative regular algebras are variants of algebras $C_{\infty}(Q(\nabla))$ for any topological fields, in particular, for the field \mathbf{Q}_p of *p*-adic numbers.

Let K be an arbitrary field and t be the Hausdorff topology on K. If operations $\alpha \to (-\alpha), \alpha \to \alpha^{-1}$ and operations $(\alpha, \beta) \to \alpha + \beta, (\alpha, \beta) \to \alpha\beta, \alpha, \beta \in K$, are continuous with respect to this topology, we say that (K, t) is a topological field (see, for example, [13, Ch.20, §165]).

Let (K,t) be a topological field, (X,τ) be any topological space and $\nabla(X)$ be a Boolean algebra of all clopen subsets in (X,τ) . A map $\varphi : (X,\tau) \to (K,t)$ is called *almost continuous* if there exists a dense open set U in (X,τ) such that the restriction $\varphi|_U : U \to (K,t)$ of the map φ on the subset U is continuous in U. The set of all almost continuous maps from (X,τ) to (K,t) we denote by AC(X,K).

We define pointwise algebraic operations in AC(X, K) by

$$(\varphi + \psi)(t) = \varphi(t) + \psi(t);$$
$$(\alpha \varphi)(t) = \alpha \varphi(t);$$
$$(\varphi \cdot \psi)(t) = \varphi(t)\psi(t)$$

for all $\varphi, \psi \in AC(X, K), \alpha \in K, t \in X$.

Since an intersection of two dense open sets in (X, τ) is a dense open set in (X, τ) , then $\varphi + \psi$, $\varphi \cdot \psi \in AC(X, K)$ for any $\varphi, \psi \in AC(X, K)$. Obviously, $\alpha \varphi \in AC(X, K)$ for all $\varphi \in AC(X, K)$, $\alpha \in K$. It can be easily checked that AC(X, K) is a commutative algebra over K with the unit element $\mathbf{1}(t) = \mathbf{1}_K$ for all $t \in X$, where $\mathbf{1}_K$ is the unit element of K. In this case, the algebra C(X, K) of all continuous maps from (X, τ) to (K, t) is a subalgebra in AC(X, K).

In the algebra AC(X, K) consider the following ideal

$$I_0(X,K) = \{\varphi \in AC(X,K) : \text{ interior of preimage } \varphi^{-1}(0) \text{ is dense in } (X,\tau) \}.$$

By $C_{\infty}(X, K)$ denote the quotient algebra $AC(X, K)/I_0(X, K)$ and by π : $AC(X, K) \to AC(X, K)/I_0(X, K)$ denote the corresponding canonical homomorphism.

Theorem 1. The quotient algebra $C_{\infty}(X, K)$ is a commutative unital regular algebra over the field K. Moreover, if (X, τ) is a Stone compact set, then algebra $C_{\infty}(X, K)$ is laterally complete, and the Boolean algebra ∇ of all its idempotents is isomorphic to the Boolean algebra $\nabla(X)$.

Proof. Since AC(X, K) is a commutative unital algebra over K, then $C_{\infty}(X, K)$ is also a commutative unital algebra over K with unit element $\pi(\mathbf{1})$. Now we show that $C_{\infty}(X, K)$ is a regular algebra, i.e. for any $\varphi \in AC(X, K)$ there exists $\psi \in AC(X, K)$, such that $\pi^{2}(\varphi)\pi(\psi) = \pi(\varphi)$.

We fix an element $\varphi \in AC(X, K)$ and choose a dense open set $U \in \tau$, such that the restriction $\varphi|_U : U \to (K, t)$ is continuous. Since $K \setminus \{0\}$ is an open set in (K, t), then the set $V = U \cap \varphi^{-1}(K \setminus \{0\})$ is open in (X, τ) . Clearly, the set $W = X \setminus \overline{V}^{\tau}$ is also open in (X, τ) , in this case $V \cup W$ is a dense open set in (X, τ) .

We define a map $\psi: X \to K$, as follow: $\psi(x) = (\varphi(x))^{-1}$ if $x \in V$, and $\psi(x) = 0$ if $x \in X \setminus V$. It is not hard to prove that $\psi \in AC(X, K)$ and $\varphi^2 \psi - \varphi \in I_0(X, K)$, i.e. $\pi^2(\varphi)\pi(\psi) = \pi(\varphi)$. Hence, the algebra $C_{\infty}(X, K)$ is regular.

For any clopen set $U \in \nabla(X)$ its characteristic function χ_U belongs to AC(X, K), in this case, $\pi(\chi_U)^2 = \pi(\chi_U^2) = \pi(\chi_U)$, i.e. $\pi(\chi_U)$ is an idempotent in the algebra $C_{\infty}(X, K)$.

Assume that (X, τ) is a Stone compact and we show that for any idempotent $e \in C_{\infty}(X, K)$ there exists $U \in \nabla(X)$ such that $e = \pi(\chi_U)$.

If $e \in \nabla$, then $e = \pi(\varphi)$ for some $\varphi \in AC(X, K)$ and $\pi(\varphi) = e^2 = \pi(\varphi^2)$, i.e. $(\varphi^2 - \varphi) \in I_0(X, K)$. Hence, there exists a dense open set V in X such that $\varphi^2(t) - \varphi(t) = 0$ for all $t \in V$. Denote by U a dense open set in X such that the restriction $\varphi|_U : U \to K$ is continuous. Put $U_0 = \varphi^{-1}(\{0\}) \cap (U \cap V), U_1 =$ $\varphi^{-1}(\{1_K\}) \cap (U \cap V)$. Since $U_0 \cap U_1 = \emptyset, U_0 \cup U_1 = U \cap V \in \tau$ and the sets U_0, U_1 are closed in $U \cap V$ with respect to the topology induced from (X, τ) , it follows that $U_0, U_1 \in \tau$. Hence, the set $U_{\varphi} = \overline{U_1}$ belongs to the Boolean algebra $\nabla(X)$, besides, $U_{\varphi} \cap U_0 = \emptyset$.

Since $U_0 \cup U_1 = U \cap V$ is a dense open set in (X, τ) and $\varphi(t) = \chi_{U_{\varphi}}(t)$ for all $t \in U_0 \cup U_1$, it follows that $e = \pi(\varphi) = \pi(\chi_{U_{\varphi}})$. Thus, the mapping $\Phi : \nabla(X) \to \nabla$ defined by the equality $\Phi(U) = \pi(\chi_U), U \in \nabla(X)$, is a surjection.

Moreover, for $U, V \in \nabla(X)$ the following equalities hold

$$\Phi(U \cap V) = \pi(\chi_{U \cap V}) = \pi(\chi_U \chi_V) = \pi(\chi_U)\pi(\chi_V) = \Phi(U)\Phi(V),$$

$$\Phi(X \setminus U) = \pi(\chi_{X \setminus U}) = \pi(\mathbf{1} - \chi_U) = \Phi(X) - \Phi(U).$$

Furthermore, the equality $\Phi(U) = \Phi(V)$ implies that the continuous mappings χ_U and χ_V coincide on a dense set in X. Therefore $\chi_U = \chi_V$, that is U = V.

Hence, Φ is an isomorphism from the Boolean algebra $\nabla(X)$ onto the Boolean algebra ∇ of all idempotents from $C_{\infty}(X, K)$, in particular, ∇ is a complete Boolean algebra.

Finally, to prove *l*-completeness of the algebra $C_{\infty}(X, K)$ we show that for any family $\{\pi(\varphi_i) : \varphi \in AC(X, K)\}_{i \in I}$ of nonzero pairwise disjoint elements in $C_{\infty}(X, K)$ there exists $\varphi \in AC(X, K)$ such that $\pi(\varphi)s(\pi(\varphi_i)) = \pi(\varphi_i)$ for all $i \in I$. For any $i \in I$ we choose a dense open set U_i such that the restriction $\varphi_i|_{U_i}$ is continuous and put $V_i = U_i \cap \varphi_i^{-1}(K \setminus \{0\}), i \in I$. It is not hard to prove that $s(\pi(\varphi_i)) = \Phi(\overline{V_i})$. In particular, $V_i \cap V_j = \emptyset$ when $i \neq j, i, j \in I$. Define the mapping $\varphi : X \to K$, as follows $\varphi(t) = \varphi_i(t)$ if $t \in V_i$ and $\varphi(t) = 0$ if $t \in X \setminus \left(\bigcup_{i \in I} V_i\right)$. Clearly, $\varphi \in AC(X, K)$ and $\pi(\varphi)s(\pi(\varphi_i)) = \pi(\varphi_{\overline{V_i}}) = \pi(\varphi_i\chi_{\overline{V_i}}) = \pi(\varphi_i)$ for all $i \in I$.

3 Laterally complete regular modules

Let \mathcal{A} be a laterally complete commutative regular algebra and let ∇ be a Boolean algebra of all idempotents in \mathcal{A} . Let X be a left \mathcal{A} -module with algebraic operations x + y and $ax, x, y \in X, a \in \mathcal{A}$. Since the algebra \mathcal{A} is commutative, then a left \mathcal{A} -module X becomes a right \mathcal{A} -module, if we put $xa := ax, x \in X, a \in \mathcal{A}$. Hence, we can assume, that X is a bimodule over \mathcal{A} , where the following equality ax = xaholds for any $x \in X, a \in \mathcal{A}$. Next, an \mathcal{A} -bimodule X we shall call an \mathcal{A} -module.

An \mathcal{A} -module X is called faithful, if for any nonzero $e \in \nabla$ there exists $x \in X$ such that $ex \neq 0$. Clearly, for a faithful \mathcal{A} -module X the set $X_e := eX$ is a faithful \mathcal{A}_e -module for any $0 \neq e \in \nabla$, where $\mathcal{A}_e := e\mathcal{A}$.

An \mathcal{A} -module X is said to be a regular module, if for any $x \in \mathcal{A}$ the condition ex = 0, for all $e \in L \subset \nabla$, implies $(\sup L)x = 0$. In this case, for $x \in X$ the idempotent $s(x) = \mathbf{1} - \sup\{e \in \nabla : ex = 0\}$ is called the support of an element x. In case, when $X = \mathcal{A}$, the notions of support of an element in an \mathcal{A} -module X and of support of an element in \mathcal{A} coincide. If X is a regular \mathcal{A} -module, then X_e is also a regular \mathcal{A}_e -module for any nonzero $e \in \nabla$.

We need the following properties of supports of elements in a regular \mathcal{A} -module X.

Proposition 3. Let X be a regular A-module, $x, y \in X$, $a \in A$. Then

(i). s(x)x = x;(ii). if $e \in \nabla$ and ex = x, then $e \ge s(x);$ (iii). s(ax) = s(a)s(x).

Proof. (i). If $r(x) = \sup\{e \in \nabla : ex = 0\}$, then s(x) = 1 - r(x) and r(x)x = 0. Hence, x = (s(x) + r(x))x = s(x)x.

(*ii*). As ex = x, then (1 - e)x = 0, and therefore $1 - e \le r(x)$. This implies $e \ge 1 - r(x) = s(x)$.

(*iii*). Since $(s(a)s(x)) \cdot (ax) = (s(a)a) \cdot (s(x)x) = ax$, then by (*ii*) we have $s(ax) \leq s(a)s(x)$. If $g = s(a)s(x) - s(ax) \neq 0$, then $ga \neq 0$, $g \leq s(a)$ and gs(ax) = 0. Hence gax = 0 and $0 = i(ga)(gax) = (i(g)i(a)ga)x = (gi(a)a)x = gs(a)x = gx \neq 0$. This contradiction implies g = 0, i.e. s(ax) = s(a)s(x).

We say that a regular \mathcal{A} -module X is laterally complete (*l*-complete), if for any set $\{x_i\}_{i\in I} \subset X$ and for any partition $\{e_i\}_{i\in I}$ of unity of the Boolean algebra ∇ there exists $x \in X$ such that $e_i x = e_i x_i$ for all $i \in I$. In this case, the element xis called mixing of the set $\{x_i\}_{i\in I}$ with respect to the partition of unity $\{e_i\}_{i\in I}$ and denote by $\min_{i\in I}(e_i x_i)$. Mixing $\min_{i\in I}(e_i x_i)$ is defined uniquely, whereas the equalities $e_i x = e_i x_i = e_i y, x, y \in X, i \in I$, implies $e_i (x - y) = 0$ for all $i \in I$, and, by regularity of the \mathcal{A} -module X, we obtain x = y.

Let $\{x_i\}_{i\in I} \subset E \subset X$ and let $\{e_i\}_{i\in I}$ be a partition of unity in ∇ . The set of all mixings $\min_{i\in I}(e_ix_i)$ is called a cyclic hull of the set E in X and denotes by $\min(E)$. Obviously, the inclusion $E \subset \min(E)$ is always true. If $E = \min(E)$, then E is called a cyclic set in X (compare with [8], 1.1.2).

Thus, a regular \mathcal{A} -module X is a l-complete \mathcal{A} -module if and only if X is a cyclic set. In particular, in any l-complete \mathcal{A} -module X its submodule X_e is also a l-complete \mathcal{A}_e -module for any nonzero idempotent e in \mathcal{A} .

We need the following properties of cyclic hulls of sets.

Proposition 4. Let X be a l-complete A-module and let E be a nonempty subset in $X, a \in A$. Then

(i). $\min(\min(E)) = \min(E);$

(*ii*). mix(aE) = amix(E);

(iii). If Y is an \mathcal{A} -submodule in X, then $\min(Y)$ is a l-complete \mathcal{A} -submodule in X;

(iv). If U is an isomorphism from \mathcal{A} -module X onto \mathcal{A} -module Z, then Z is a l-complete \mathcal{A} -module and $\min(U(E)) = U(\min(E))$.

Proof. (i). It is sufficient to show that $\min(\min(E)) \subset \min(E)$. If $x \in \min(\min(E))$, then $x = \min_{i \in I} (e_i x_i)$, where $x_i \in \min(E)$, $i \in I$. Since $x_i \in \min(E)$, then $x_i = \min_{j \in J(i)} (e_j^{(i)} x_j^{(i)})$, where $x_j^{(i)} \in E$, $j \in J(i)$ and $\{e_j^{(i)}\}_{j \in J(i)}$ is a partition of unity in the Boolean algebra ∇ for all $i \in I$. Fix $i \in I$ and put $g_j^{(i)} := e_i e_j^{(i)}$. It is clear that $\{g_j^{(i)}\}_{j \in J(i)}$ is a partition of the idempotent e_i . Hence, $\{g_j^{(i)}\}_{j \in J(i), i \in I}$ is a partition of unity **1**. Besides, $g_j^{(i)} x = g_j^{(i)} e_i x = g_j^{(i)} e_i x_i = e_i e_j^{(i)} x_j^{(i)} = g_j^{(i)} x_j^{(i)}$. This yields that $x = \min_{j \in J(i), i \in I} (g_j^{(i)} x_j^{(i)}) \in \min(E)$.

(*ii*). If $x \in \min(aE)$, then $x = \min_{i \in I}(e_i a y_i)$, where $y_i \in E, i \in I$. Since X is a *l*-complete \mathcal{A} -module, then there exists $y = \min_{i \in I}(e_i y_i) \in \min(E)$ and $e_i x = a e_i y_i = e_i(ay)$ for all $i \in I$. Hence, $e_i(x - ay) = 0$, and regularity of the \mathcal{A} -module X implies the equality x = ay. Thus, $\min(aE) \subset \min(E)$.

Conversely, if $x \in amix(E)$, then x = az, where $z = \min_{i \in I} (e_i z_i), z_i \in E, i \in I$. Since $az_i \in aE$ and $e_i x = e_i(az) = e_i ae_i z = e_i(az_i)$ for all $i \in I$, we have that $x = \min_{i \in I} (e_i(az_i)) \in mix(aE)$. Hence, $amix(E) \subset mix(aE)$.

(*iii*). Let $x, y \in \min(Y)$, $x = \min_{i \in I}(e_i x_i)$, $y = \min_{j \in J}(g_j y_j)$, where $x_i, y_j \in Y$, $i \in I$, $j \in J$, $\{e_i\}_{i \in I}$, $\{g_j\}_{j \in J}$ are partitions of unity in ∇ . Clearly, that $p_{ij} = e_i g_j$, $i \in I$, $j \in J$, is also a partition of unity in ∇ and $p_{ij}(x+y) = p_{ij}(x_i+y_j)$, where $x_i+y_j \in Y$ for all $i \in I$, $j \in J$. This means that $(x+y) \in \min(Y)$.

Since $aY \subset Y$, then by (ii) we have that $ax \in amix(Y) = mix(aY) \subset mix(Y)$. Hence, mix(Y) is an \mathcal{A} -submodule in X, and by regularity of the \mathcal{A} -module X, it is a regular \mathcal{A} -module. The equality mix(Y) = mix(mixY) (see (i)) implies that mixYis a *l*-complete \mathcal{A} -module.

(*iv*). If $U(x) = y \in Z$, $x \in X$, $\emptyset \neq L \subset \nabla$ and ey = 0 for all $e \in L$, then U(ex) = eU(x) = ey = 0. Since U is a bijection, then ex = 0 for any $e \in L$. By regularity of the \mathcal{A} -module X, we have that $(\sup L)x = 0$, and, therefore, $(\sup L)y = U((\sup L)x) = 0$. Hence, Z is a regular \mathcal{A} -module. In the same way we show that Z is a *l*-complete \mathcal{A} -module and the equality mix(U(E)) = U(mix(E)) holds.

Let ∇ be an arbitrary complete Boolean algebra. For any nonzero element $e \in \nabla$ we put $\nabla_e = \{q \in \nabla : q \leq e\}$. The set ∇_e is a Boolean algebra with the unity e with respect to partial order, induced from ∇ .

We say that a set B in ∇ is a minorant subset for nonempty set $E \subset \nabla$, if for any nonzero $e \in E$ there exists nonzero $q \in B$ such that $q \leq e$. We need the following property of complete Boolean algebras.

Theorem 2. ([9], 1.1.6) If ∇ is a complete Boolean algebra, e is a nonzero element in ∇ and B is a minorant subset for ∇_e , then there exists a disjoint subset $L \subset B$ such that $\sup L = e$.

We say that a Boolean algebra ∇ has a countable type or is σ -finite, if any nonfinite family of nonzero pairwise disjoint elements in ∇ is a countable set. A complete Boolean algebra ∇ is called *multi-\sigma-finite*, if for any nonzero element $g \in \nabla$ there exists $0 \neq e \in \nabla$ such that $e \leq g$ and the Boolean algebra ∇_e has a countable type. By theorem 2, a multi- σ -finite Boolean algebra ∇ always has a partition $\{e_i\}_{i\in I}$ of unity 1 such that the Boolean algebra ∇_{e_i} has a countable type for all $i \in I$.

By theorem 2 we set the following useful properties of l-complete \mathcal{A} -modules.

Proposition 5. Let X be an arbitrary l-complete A-module and ∇ be a complete Boolean algebra of all idempotents in A. Then

(i). If X is a faithful A-module, then there exists an element $x \in X$ such that s(x) = 1;

(ii). If Y is a l-complete \mathcal{A} -submodule in a regular \mathcal{A} -module X and for any nonzero $e \in \nabla$ there exists a nonzero $g_e \in \nabla$ such that $g_e \leq e$ and $g_e Y = g_e X$, then Y = X.

Proof is in the same way as the proof of Proposition 2.4 in [2].

We need a representation of a faithful *l*-complete \mathcal{A} -module X as the Cartesian product of a faithful *l*-complete \mathcal{A}_{e_i} -modules family, where $\{e_i\}_{i\in I}$ is a partition of unity in the Boolean algebra ∇ of all idempotents in \mathcal{A} . In the Cartesian product

$$\prod_{i \in I} e_i X = \{\{y_i\}_{i \in I} : y_i \in e_i X\}$$

of \mathcal{A} -submodules $e_i X$ we consider coordinate-wise algebraic operations. It is clear that $\prod_{i \in I} e_i X$ is a faithful *l*-complete \mathcal{A} -module. We define a map $U : X \to \prod_{i \in I} e_i X$ given by $U(x) = \{e_i x\}_{i \in I}$. Obviously, U is a linear mapping from X onto $\prod_{i \in I} e_i X$. If U(x) = U(y), then $e_i x = e_i y$ for all $i \in I$, and by regularity of the \mathcal{A} -module X, it follows that x = y.

If $z = \{x_i\}_{i \in I} \in \prod_{i \in I} e_i X$, where $x_i \in e_i X \subset X$, $i \in I$, then *l*-completeness of the \mathcal{A} -module X implies that there exists an element $x \in X$ such that $e_i x = e_i x_i = x_i$ for all $i \in I$. Hence, U(x) = z, i.e. U is a surjection.

Thus, the following proposition holds.

Proposition 6. If X is a faithful *l*-complete \mathcal{A} -module, $\{e_i\}_{i\in I}$ is a partition of unity of the Boolean algebra ∇ of all idempotents in \mathcal{A} , then $\prod_{i\in I} e_i X$ is also a faithful *l*-complete \mathcal{A} -module and U is an isomorphism from X onto $\prod_{i\in I} e_i X$.

References

- Chilin V.I. Partially ordered Baire's involutive algebras. Modern problems of Mathematics: The latest trends, VINITI, Moscow, Vol. 27, pp. 99–128 (1985). (in Russian)
- [2] Chilin V.I., Karimov J.A. Laterally complete $C_{\infty}(Q)$ -modules. Vladikavkaz math J., Vol. 16, No. 2, pp. 69–78 (2014). (in Russian)
- [3] Clifford A.N., Preston G.B. The algebraic theory of semigroup. Amer. Math. Soc., Mathematical Surveys, Number 7, Vol. I (1964).
- [4] Kaplansky J. Projections in Banach algebras. Ann. Math, Vol. 53, pp. 235–249 (1951).
- [5] Kaplansky J. Algebras of type I. Ann. Math, Vol. 56, pp. 450–472 (1952).
- [6] Kaplansky J. Modules over operator algebras. Amer. J. Math, Vol. 75, Issue 4, pp. 839–858 (1953).
- [7] Karimov J.A. Kaplansky-Hilbert modules over the algebra of measurable functions. Uzbek math. J., No. 4, pp. 74–81 (2010). (in Russian)
- [8] Kusraev A.G. Vector duality and its applications. Nauka, Novosibirsk (1985). (in Russian)
- [9] Kusraev A.G. Dominated operators. Springer, Netherlands (2000).
- [10] Maeda F. Kontinuierliche Geometrien. Berlin (1958).
- [11] Muratov M.A., Chilin V.I. Algebra of measurable and locally measurable operators. Proceedings of Mathematics institute of NAS Ukraine, Vol. 69, (2007). (in Russian)
- [12] Skornyakov L.A. Dedekind's lattices with complements and regular rings. Fizmatgiz, Moscow (1961). (in Russian)
- [13] Van Der Waerden B.L. Algebra. Volueme II. Springer-Verlag New York (1991).
- [14] Vulikh B.Z. Introduction to the theory of partially ordered spaces. Wolters-Noordhoff Sci. Publ., Groningen (1967).