[Bulletin of National University of Uzbekistan: Mathematics and](https://bulletin.nuu.uz/journal) [Natural Sciences](https://bulletin.nuu.uz/journal)

Manuscript 1270

Cyclically compact operators in Banach modules over $L^0(B)$

Jasurbek Karimov

Follow this and additional works at: https://bulletin.nuu.uz/journal

P Part of the [Analysis Commons](https://network.bepress.com/hgg/discipline/177?utm_source=bulletin.nuu.uz%2Fjournal%2Fvol6%2Fiss4%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages)

CYCLICALLY COMPACT OPERATORS IN $\widetilde{\mathbf{BANACH}}$ MODULES OVER $L^0(B)$

Jasurbek Karimov

National University of Uzbekistan, Tashkent, Uzbekistan e-mail: karimovja@mail.ru, ja.karimov@nuu.uz

Abstract

In this paper the properties of linear cyclically compact operators in Banach modules over space $L^0(B)$ are given.

Keywords: Banach module, algebra of measurable functions, cyclically compact set, cyclically compact operator.

Mathematics Subject Classification (2010): 06F25, 46H25.

1 Introduction

In [9] were considered the cyclically compact linear operators acting in the Banach– Kantorovich spaces $(X, \| \| \|_X)$, whose norm values are in the order-complete vector lattice E. An important class of such lattices E is formed by Kantorovich–Pinsker spaces ([9]). These spaces admit an R-topology, with respect to which E becomes a separable topological vector space $([10])$. The presence of the R-topology allows one to naturally define a separable vector topology $\tau(X)$ on the the Banach–Kantorovich space X , turning X into a topological E -module. This paper describes the properties of linear cyclically compact operators acting in topological E-modules $(X, \tau(X))$ for extended Kantorovich–Pinsker spaces E.

2 Cyclically compact sets

Let B be a multinormed Boolean algebra ([9]), $L^0(B)$ be an extended Kantorovich– Pinsker space associated with B, X be a left unitary $L^0(B)$ -module ([4, 1, 5, 3, 2, 6, 7]), $\|\cdot\|_X: X \to L^0(B)$ is a norm on X endowing X with the structure of a Banach $L^0(B)$ -module. We denote by $t(B)$ the R-topology in $L^0(B)$ ([10]) and for each neighborhood of zero of U in $(L^0(B), \tau(B))$ we put $W(U) = \{x \in X : ||x||_X \in U\}.$ According to ([11]), in X there is a topology $\tau(X)$, with respect to which $(X, \tau(X))$ is a separable topological vector space, and, moreover, the system of sets $\{x+W(U)\}$ forms a basis for neighborhoods of the element $x \in X$ (in this case the topology $\tau(X)$) is said to be generated by the norm $\| \cdot \|_X$ and R-topology $t(B)$). The convergence of the network $x_{\alpha} \xrightarrow{\tau(X)} x, x_{\alpha}, x \in X$ means that $||x_{\alpha} - x||_X \xrightarrow{t(B)} 0$.

Let ${e_i}_{i\in I}$ be an arbitrary partition of the unity **1** in the Boolean algebra B of all idempotents from $L^0(B)$, $\{x_i\}_{i\in I} \subset X$, where I is a certain set of indices. An element $x \in X$ is called a mixing of the family $\{x_i\}$ with respect to $\{e_i\}$ if $e_ix = e_ix_i$ for all $i \in I$ ([8]). Since $(X, \|\cdot\|_X)$ is a Banach $L^0(B)$ -module, then mixing always exists and it is unique ([9]). Mixing x is denoted by $\min_{i \in I} (e_i x_i)$.

The set of all mixings $\min_{i \in I} (e_i x_i)$, where $\{x_i\}_{i \in I} \subset F \subset X$, $\{e_i\}_{i \in I}$ is a partition of unity in B, is called the cyclic hull of a subset F from X and is denoted by $\text{mix}(F)$. If $F = \text{mix}(F)$, then F is said to be a cyclic subset of X ([8]). It is clear that $X = \text{mix}(X)$.

Let B be a multinormed Boolean algebra and let $P(N)$ be a set of all countable partitions of unity in B, numbered by positive integers $n \in \mathbb{N}$, i.e.

$$
P(\mathbb{N}) = \left\{ a : \mathbb{N} \to B \, | \, a(n) \wedge a(m) = 0, n \neq m, \sup_{n \in \mathbb{N}} a(n) = 1 \right\}.
$$

We introduce a partial order into $P(\mathbb{N})$, setting $a \leq b \Leftrightarrow$ (for any $n, m \in \mathbb{N}$ from $a(n) \wedge b(m) \neq 0$ it follows, that $n \leq m$, where $a, b \in P(\mathbb{N})$. In [8] it is shown that the introduced relation $a \leq b$ is a partial order relation on $P(\mathbb{N})$ and the partially ordered set $(P(\mathbb{N}), \leq)$ is the direction, i.e. for any $a, b \in P(\mathbb{N})$ there is $d \in P(\mathbb{N})$ such that $a \leq d, b \leq d$.

Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence of X. For each $a \in P(\mathbb{N})$ we put $x_a = \min_{n\in\mathbb{N}} (a(n)x_n)$. Any subsequence of the net ${x_a}_{a \in P(A)}$ is called a cyclic subsequence of the original sequence $\{x_n\}_{n\in\mathbb{N}}$.

A subset $K \subset X$ is said to be cyclically compact if $K = \max(K)$ and every sequence in K has a cyclic subsequence $\tau(X)$ -converging to some element in K [7]. A subset $K \subset X$ is said to be relatively cyclically compact if K is contained in some cyclically compact set of X |7|.

Proposition 1. Let X be a Banach $L^0(B)$ -module, $f \in L^0$, $K \subset X$. If K is cyclically compact (respectively, relatively cyclically compact), then $fK = \{fx : x \in K\}$ is also cyclically compact (respectively, relatively cyclically compact).

Proof. First let K be a cyclically compact. For any partition ${e_i}_{i \in I}$ of the unity and the set ${f_x}_i_{i\in I} \subset fK$, $x_i \in K$, we have that for

$$
\min_{i \in I} (e_i f x_i) = f \min_{i \in I} (e_i x_i) \in fK.
$$

Therefore, $mix(fK) = fK$.

Consider an arbitrary sequence $y_n = fz_n \in fK$, $z_n \in K$. Since K is cyclically compact, there exists a cyclic subsequence $\{z_{a_k}\}_{k\in\mathbb{N}}$ and an element $x \in K$ such that $||z_{a_k} - x||_X \xrightarrow{t(B)} 0$. It is clear that $y_{a_k} = fz_{a_k}$ is a cyclic subsequence for the sequence ${y_n}_{n\in\mathbb{N}}$, while $||y_{a_k} - fx||_X \stackrel{t(B)}{\longrightarrow} 0$ and $fx \in K$. This means that fK is a cyclically compact set.

The relative cyclic compactness of the set fK is established similarly in the case when K is relatively cyclically compact. \Box

We need the following useful criterion for relative cyclic compactness from [9].

Theorem 1. Let K be an arbitrary cyclic set from the Banach $L^0(B)$ -module $(X, \|\cdot\|_X)$. Then K is relatively cyclically compact if and only if for any $\varepsilon > 0$ there exist a countable partition ${e_n}_{n\in\mathbb{N}}$ of the unity in the Boolean algebra B and the sequence ${E_n}_{n\in\mathbb{N}}$

of finite subsets of $E_n = \{x_1^{(n)}\}$ $x_1^{(n)}, \ldots, x_{k(n)}^{(n)}$ $\{e_{k(n)}^{(n)}\} \subset K$ such that $e_n(\text{mix}(E_n))$ serves as a ε net for $e_n K$ for all $n \in \mathbb{N}$, i.e. for each $x \in e_n K$ there is a partition $\{q_1^{(n)}\}$ $q_{1}^{(n)}, \ldots, q_{k(n)}^{(n)}$ $\binom{n}{k(n)}$ of the unity in B, for which

$$
\left\|x - \sum_{i=1}^{k(n)} e_n q_i^{(n)} x_i^{(n)}\right\|_X \leq \varepsilon \cdot 1.
$$

A set $F \subset X$ is called L^0 -bounded if $||x||_X \leq f$ for all $x \in F$ and some $0 \leq f \in$ $L^0(B)$. The following proposition follows from Theorem 1.

Proposition 2. Every relatively cyclically compact set is L^0 -bounded.

3 Cyclically compact operators

Let $(X, \|\,.\,\|_X)$ and $(Y, \|\,.\,\|_Y)$ be Banach $L^0(B)$ -modules. A linear operator $T : X \to Y$ Y is called L^0 -bounded if there exists $0 \le f \in L^0(B)$ such that $||Tx||_Y \le f||x||_X$ for all $x \in X$. We denote by $B(X, Y)$ the left unitary $L^{0}(B)$ -module of all L^{0} -bounded linear mappings from X to Y. With respect to the norm $||T||_{B(X,Y)} = \sup_{x \in \mathbb{R}} ||Tx||_{Y}$ $||x||_X\leq 1$

the module $B(X,Y)$ becomes a Banach $L^0(B)$ -module. Let $\tau(B(X,Y))$ denote the topology in $B(X, Y)$ generated by the norm $\|\,.\,\|_{B(X, Y)}$ and R-topology $t(B)$.

Each L^0 -bounded operator T has the following property of L^0 -linearity ([9]): $T(fx + gy) = fT(x) + gT(y)$ for any $f, g \in L^0$, $x, y \in X$. The following propositions holds

Proposition 3. A L^0 -linear operator T from X to Y is L^0 -bounded if and only if the set $T({x \in X : ||x||_X \le 1})$ is L^0 -bounded in Y.

A mapping $V: X \to Y$ is said to preserve mixing if $V(\max_{i \in I} (e_i x_i)) = \min_{i \in I} (e_i T(x_i))$ for any partition ${e_i}_{i \in I}$ of the unity and an arbitrary set ${x_i}_{i \in I} \subset X$. The following proposition gives examples of mixing-preserving mappings.

Proposition 4. (i) If $T \in B(X, Y)$ then T preserves mixing;

(ii) A map $\| \cdot \|_X : X \to L^0(B)$ preserves mixing.

Proof. (i). If $T \in B(X, Y)$, then T is L⁰-linear, and therefore for $x = \min_{i \in I} (e_i x_i)$ we have that $e_i x = e_i x_i$ and $e_i T(x) = T(e_i x) = T(e_i x_i) = e_i T(x_i)$. Hence,

$$
\min_{i \in I} (e_i T(x_i)) = T(x) = T(\min_{i \in I} (e_i x_i)),
$$

i.e. T preserves mixing.

The statement (ii) is proved in a similar way.

Let $U(0, 1) = \{x \in X : ||x||_X \leq 1\}$. The following corollary follows from Proposition 4

 \Box

Corollary 1. If $T \in B(X, Y)$, then $T(U(0, 1))$ is a cyclic set.

Proof. Let ${e_i}_{i\in I} \in P(A)$, ${y_i}_{i\in I} \subset T(U(0, 1))$, $y_i = T(x_i)$, where $x_i \in U(0, 1)$, $i \in$ *I*. For $y = \min_{i \in I} (e_i y_i)$ and $x = \min_{i \in I} (e_i x_i)$, by Proposition 4 (i), we have that $T(x) = y$, and $||x||_X = \min_{i \in I} (e_i ||x_i||_X) \le 1$, i.e. $y \in T(U(0, 1))$. Therefore, $\min(T(U(0, 1))) =$ $T(U(0, 1)).$ \Box

A L^0 -linear operator $T: X \to Y$ is called cyclically compact if for any L^0 -bounded set $F \subset X$ its image $T(F)$ is relatively cyclically compact in Y.

Let $K(X, Y)$ denote the set of all L^0 -linear cyclically compact operators from X to Y. From Propositions 2 and 3 it follows that $K(X, Y) \subset B(X, Y)$.

Proposition 5. If $T : X \to Y$ is a L⁰-linear map and the image of $T(\lbrace x \in X : Y \rbrace)$ $||x||_X \leq 1$) is relatively cyclically compact, then $T \in K(X, Y)$.

Proof. According to Propositions 2 and 3, we have that $T \in B(X, Y)$. Let F be a L^0 -bounded set in X, i.e., there exists a $0 \le g \in L^0(B)$, that $||x||_{X} \le g$ for all $x \in F$. Let $G = \{(\mathbf{1} + g)^{-1}x \mid x \in F\}$. Since $\|(\mathbf{1} + g)^{-1}x\|_X = (\mathbf{1} + g)^{-1} \|x\|_X \leq 1$ for all $x \in F$, then $G \subset U(0, 1)$, and therefore $T(G) \subset T(U(0, 1))$. Since $T(U(0, 1))$ is relatively cyclically compact, the set $T(G) = (1+g)^{-1}T(F)$ is also relatively cyclically compact. According to Proposition 1, we obtain that the set $T(F) = (1 + q)T(G)$ is also relatively cyclically compact, i.e. $T \in K(X, Y)$. \Box

Theorem 2. $K(X, Y)$ is a $\tau(B(X, Y))$ -closed $L^0(B)$ -submodule of $B(X, Y)$.

Proof. If $T, S \in K(X, Y)$, then the sets $K_1 = T(U(0, 1)), K_2 = S(U(0, 1))$ are relatively cyclically compact in Y, while K_1 and K_2 are cyclic (see Corollary 1). In addition, for any $e \in B$ we have that $eK_1 = T(eU(0, 1)) \subset T(U(0, 1)),$ i.e. $eK_1 \subset K_1$. Similarly, $eK_2 \subset K_2$. According to Theorem 1, for any $\varepsilon > 0$ there are countable partitions ${e_n}_{n\in\mathbb{N}}$ and ${e'}_n$ _{n∈N} of the unity in B and sequences of finite sets

$$
E_n = \{x_1^{(n)}, \dots, x_{k(n)}^{(n)}\} \subset K_1
$$

and

$$
F_n = \{y_1^{(n)}, \dots, y_{s(n)}^{(n)}\} \subset K_2
$$

such that $e_n(\text{mix}(E_n))$ and $e'_n(\text{mix}(F_n))$ are $\varepsilon/2$ -nets for e_nK_1 and for e'_nK_2 , respectively, for any $n \in \mathbb{N}$.

Let

$$
q_{n,m} = e_n \cdot e'_m, \ D_{n,m} = E_n + F_m = \{x_i^{(n)} + y_j^{(m)} : i = \overline{1, k(n)}, j = \overline{1, s(m)}\}.
$$

It is clear that $D_{n,m}$ is a finite subset of $K_1 + K_2 = (T+S)(U(0,1)), q_{n,m} \cdot q_{n',m'} = 0$, if $(n,m) \neq (n',m')$, sup $q_{n,m} = 1$, i.e. $\{q_{n,m}\}\$ is a countable partition of the unity $n,m\in\mathbb{N}$ in B. It is easy to verify that $q_{n,m}(\text{mix}(D_{n,m}))$ is a ε -net for the set $q_{n,m}(K_1 + K_2)$. Moreover, $K_1 + K_2 = (T + S)(U(0, 1))$ is a cyclic set (see Corollary 1). Therefore, by Theorem 1, the set $(T+S)(U(0, 1))$ is relatively cyclically compact, which, according to Proposition 5, implies the cyclic compactness of the operator $T + S$, i.e. $T + S \in$ $K(X, Y)$.

Since $T(U(0, 1))$ is relatively cyclically compact, then, according to Proposition 1, the set $(fT)(U(0, 1)) = fT(U(0, 1))$ is also relatively cyclically compact, and therefore $fT \in K(X,Y)$ (see Proposition 5) for any $f \in L^0(B)$.

Thus $K(X, Y)$ is a $L^0(B)$ -submodule of $B(X, Y)$.

Now we show that $K(X,Y)$ is a $\tau(B(X,Y))$ -closed $L^0(B)$ -submodule in $B(X,Y)$. Let $T_{\alpha} \in K(X,Y)$, $T \in B(X,Y)$ and $||T_{\alpha} - T||_{B(X,Y)} \xrightarrow{t(B)} 0$. Since B is a multinormed Boolean algebra, then there is a partition ${e_i}_{i \in I}$ of the unity in B such that the Boolean algebra e_iB has a countable type for each $i \in I$. It is clear that $e_iT_\alpha \in K(e_iX, e_iY), e_iT \in B(e_iX, e_iY),$ while $||e_iT_\alpha - e_iT||_{B(e_iX, e_iY)} \xrightarrow{t(B)} 0$ for all $i \in I$.

We show that $e_i T \in K(e_i X, e_i Y), i \in I$. Since $e_i B$ is of countable type, there is a sequence of indices $\alpha_1 \leq \ldots \leq \alpha_n \leq \ldots$ such that

$$
||e_i T_{\alpha_n} - e_i T||_{B(e_i X, e_i Y)} \xrightarrow{(o)} 0.
$$

From ([12]) it follows that there exist such $0 \le u \in L^0(e_i B)$ and numbers $\varepsilon_n \downarrow 0$, which means

$$
||e_i T_{\alpha_n} - e_i T||_{B(e_i X, e_i Y)} \le \varepsilon_n u.
$$

Let $S_n = (e_i + u)^{-1} e_i T_{\alpha_n}, S = (e_i + u)^{-1} e_i T$. We have that $S_n \in K(e_i X, e_i Y)$, $S \in B(e_i X, e_i Y)$ and

$$
||S_n - S||_{B(e_i X, e_i Y)} = (e_i + u)^{-1} ||T_{\alpha_n} - T||_{B(e_i X, e_i Y)} \le \varepsilon_n (e_i + u)^{-1} \le \varepsilon_n \cdot e_i
$$

for all $n \in \mathbb{N}$.

We fix $\varepsilon > 0$ and choose $n_0 \in \mathbb{N}$ such that $\varepsilon_{n_0} < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$, i.e.

$$
||S_{n_0} - S||_{B(e_i X, e_i Y)} \le \frac{\varepsilon}{2} \cdot e_i.
$$

Since $S_{n_0} \in K(e_i X, e_i Y)$, then there is a countable partition ${p_n}_{n \in N}$ of idempotent e_i and sequence of finite sets $E_n = \{y_1^{(n)}\}$ $y_1^{(n)},\ldots,y_{k(n)}^{(n)}$ ${s_{n_0} \choose k(n)} \subset S_{n_0}(U(0, e_i))$ such that $p_n(\text{mix}(E_n))$ is a $\varepsilon/2$ -net for $p_nS(U(0, e_i))$. Let $y \in p_nS(U(0, e_i))$, i.e. $y = p_nS(x)$, where $x \in U(0, e_i)$. We put $z = p_n S_{n_0}(x)$. Then $z \in p_n S_{n_0}(U(0, e_i))$ and therefore there is a partition $\{q_1^{(n)}\}$ $q_{k(n)}^{(n)}, \ldots, q_{k(n)}^{(n)}$ $\binom{n}{k(n)}$ of the unity in B such that

$$
\left\| z - \sum_{i=1}^{k(n)} p_n q_i^{(n)} y_i^{(n)} \right\|_X \le \frac{\varepsilon}{2} \cdot e_i.
$$

Hence,

$$
\left\|y - \sum_{i=1}^{k(n)} p_n q_i^{(n)} y_i^{(n)}\right\|_X = \left\|p_n S(x) - p_n S_{n_0}(x) + z - \sum_{i=1}^{k(n)} p_n q_i^{(n)} y_i^{(n)}\right\|_X \le
$$

$$
\le p_n \|S(x) - S_{n_0}\|_{B(X,Y)} \cdot \|x\|_X + \left\|z - \sum_{i=1}^{k(n)} p_n q_i^{(n)} y_i^{(n)}\right\|_X \le \varepsilon \cdot e_i.
$$

According to Theorem 1, we have that $S(U(0, e_i))$ is relatively cyclically compact, and therefore $S \in K(e_i X, e_i Y)$ (see Proposition 5). Therefore, $e_i T = (e_i + u)S \in$ $K(e_i X, e_i Y)$ for all $i \in I$, and therefore $T \in K(X, Y)$. \Box

We put $K(X) = K(X, X), B(X) = B(X, X).$

Theorem 3. If $T \in K(X)$, $S \in B(X)$, then $TS, ST \in K(X)$.

Proof. Since $S \in B(X)$, the set $S(U(0, 1))$ is L^0 -bounded (see Proposition 3). Since $T \in K(X)$, then $(TS)(U(0, 1)) = T(S(U(0, 1)))$ is a relatively cyclically compact set in X. By Proposition 5, we have that $TS \in K(X)$.

Now we show that $ST \in K(X)$. Let $S_1 = (1 + ||S||)^{-1}S$. It is clear that $S_1 \in$ $B(X)$ and $||S_1|| \leq 1$. Consider the set $M = (S_1T)(U(0, 1))$. According to Corollary 1, the set M is cyclic. Since $T \in K(X)$, then, by Theorem 1 and Corollary 1, there is a countable partition ${e_n}_{n\in\mathbb{N}}$ of the unity in B and a sequence of finite subsets $E_n = \{y_1^{(n)}\}$ $\bar{\mathbf{y}}_1^{(n)},\ldots,\bar{\mathbf{y}}_{k(n)}^{(n)}$ $\{e_{k(n)}^{(n)}\} \subset T(U(0,1))$ such that $e_n(\min_{n\in\mathbb{N}}(E_n))$ is a ε -net for $e_nT(U(0,1))$. Let us show that $e_n(\max_{n\in\mathbb{N}}S_1(E_n))$ is a ε -net for M. Let $y\in e_nM$, i.e. $y=e_nS_1(T(x))$, where $||x||_X \leq 1$. Let $z = e_nT(x)$. Then $z \in e_nT(U(0, 1))$, and therefore there is a partition $\{q_1^{(n)}\}$ $q^{(n)}_1,\ldots,q^{(n)}_{k(n)}$ $\{k_{n}^{(n)}\}$ of the unity in B, such that

$$
\left\| z - \sum_{i=1}^{k(n)} e_n q_i^{(n)}(y_i^{(n)}) \right\|_X \leq \varepsilon \cdot \mathbf{1}.
$$

Since $y = e_n S_1(T(x)) = S_1(e_n T(x)) = S_1(z)$ and $||S_1|| \leq 1$, then

$$
\left\|y - \sum_{i=1}^{k(n)} e_n q_i^{(n)} S_1(y_i^{(n)})\right\|_X = \left\|S_1\left(z - \sum_{i=1}^{k(n)} e_n q_i^{(n)} S_1(y_i^{(n)})\right)\right\|_X \leq \varepsilon \cdot 1.
$$

By Theorem 1, we obtain that M is a relatively cyclically compact set, and therefore $S_1T \in K(X)$ (see Statement 5). And by Theorem 2

$$
ST = (\mathbf{1} + ||S||)(S_1T) \in K(X).
$$

References

- [1] Chilin V.I., Karimov J.A. Strictly homogeneous laterally complete modules. J. Phys. Conf. Ser., Vol. 697 (2016).
- [2] Chilin V.I. Karimov J.A. Criterion of cyclically compactness in finite-dimensional normed module. Uzbek Mathematical Journal, Issue 3, pp. 51–62 (2018). DOI: 10.29229/uzmj.2018-3-5
- [3] Chilin V.I., Karimov J.A. The Cyclical Compactness in Banach $C_{\infty}(Q)$ -Modules. J Math Sci, Vol. 265, pp. 129–145 (2022). DOI: 10.1007/s10958-022-06050-0
- [4] Karimov J.A. Kaplansky-Hilbert modules over the algebra of measurable functions. Uzbek Math. Zh., No. 4, pp. 74–81 (2010).
- [5] Karimov J.A. Equivalence of norms in finite dimensional $C_{\infty}(Q)$ -modules. Vestnik NUUz, No. 2/1, pp. 100–108 (2017). (in Russian)
- [6] Karimov J.A. Criterion of compactness of the sets in finite-dimensional Banach modules. New results of mathematics and their applications, Abstracts (2018).
- [7] Karimov J.A. Cyclically compact sets in Banach modules over algebra L^0 . Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences, Vol. 5, Iss. 4, pp. 269–273 (2022). DOI: 10.56017/2181-1318.1265
- [8] Kusraev A.G. Vector duality and its applications. Novosibirsk, Nauka, (1985). (in Russian)
- [9] Kusraev A.G. Dominated operators. Netherlands, Springer, (2000).
- [10] Sarimsakov T.A., Ayupov Sh.A., Khadjiev D., Chilin V.I. Ordered algebras. Tashkent, FAN (1983). (in Russian)
- [11] Schaefer H.H. Topological Vector Spaces. Macmillan (1967).
- [12] Vulikh B.Z. Introduction to the Theory of Partially Ordered Spaces. Groningen, Wolters-Noordhoff Sci. Publ. (1967).