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Abstract

In this note we prove that if a function u(x, y) is separately harmonic in a
domain

D × Vr = D ×
{
y ∈ R2 : |y| < r, r > 1

}
⊂ Rn × R2

and for each fixed point x0 ∈ D the function u(x0, y) of variable y continues
harmonically into the great circle{

y ∈ R2 : |y| < R(x0), R(x0) > r
}
,

then it continues harmonically into a domain{
(x, y) ∈ Rn × R2 : |y| < R∗(x), x ∈ D

}
over a set of variables.
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Introduction
Suppose given two domains D ⊂ Rn and G ⊂ Rm and two sets E ⊂ D and

F ⊂ G. Suppose that a function u(x, y) is originally defined on the set E × F and
possesses the following properties:

(a) for each fixed x0 ∈ E, the function u(x0, y) can be harmonically extended to
G;

(b) for each fixed y0 ∈ F , the function u(x, y0) can be harmonically extended to
D.

In this case, the above-mentioned extensions of u(x, y) define a certain function
on the set

X = (E ×G) ∪ (D × F ) ,

which is called a separately harmonic function on X.
In the case when E = D, F = G, the function u(x, y) is called separately harmonic

in the domain X = D ×G, i.e., harmonic in each variable separately.
It is clear that the set X, in general, is not a domain. But in spite of this,

the definition of separately harmonic functions on X (similarly to the definition of
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separately-analytic functions in complex space, see [3], [5], [9], [10], [2], [11] and
[13]) makes some sense, since harmonic functions have some properties of analytic
functions.

In an arbitrary domain, which in general is not represented as a product of two
domains, the separately harmonic function u(x, y) is defined as follows: if the function
u(x, y) is defined in the domain Q ⊂ Rn(x)×Rm(y) (n,m ≥ 2) and has the following
properties :

1) for any x0 : {x = x0}∩Q 6= ∅, the function u(x0, y) is harmonic in the variable
y on the section {x = x0} ∩Q;

2) for any y0 : {y = y0}∩Q 6= ∅, the function u(x, y0) is harmonic in the variable
x on the section {y = y0} ∩Q,
then it is called a separately harmonic function in the domain Q.

The first result about separately harmonic functions was obtained by Lelong.

Theorem 0.1 (Lelong [14]). If u(x, y) is separately harmonic function in the domain
Q ⊂ Rn × Rm, then u(x, y) is harmonic in Q over the set of variables.

A more general case, i.e., the separately harmonic function problem was studied
in the works of Zeriahi [12] and Hecart [16].

1 Extremal functions in the class of harmonic func-
tions and the Hecart theorem

In the study of harmonic function spaces, Zahariuta (see [4]) introduced the ex-
tremal function. In this section we will give the notion of H-regularity of compacts
(see [15] and [16]) and the Hecart theorem on the continuation of separately harmonic
functions.

Let us denote by h(D) the set of all harmonic functions in the domain D ⊂ Rn.

Definition 1.1 (see [4] and [15]). Let D be a domain in Rn, and K is a compact in
D. Let us define

χ0(x,K,D) := lim
ε→0

χε(x,K,D),

where

χε(x,K,D) := lim
y→x

sup
{
λ ln |u(y)| , u ∈ h(D), 0 < λ < ε, ‖u‖K ≤ 1, ‖u‖λD ≤ e

}
.

Definition 1.2 (see [4] and [16]). Let {Ds}s∈N be a sequence of domains from Rn

such that
Ds ⊂ Ds+1,

⋃
s∈N

Ds = D

and {Kr}r∈N be a sequence of compact subsets of D1 such that

Kr+1 b IntKr,
⋂
r∈N

Kr = K.
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Let us define the extremal Zahariuta function h(·, K,D), associated with (K,D) by
the formula:

h(x,K,D) := lim
y→x

lim
r→+∞

χ(x,Kr, D), x ∈ D,

where
χ(x,K,D) := lim

s→+∞
χ0(x,K,Ds).

Remark 1.1. In the case n = 2 Zahariuta proved (see [4]) that h(·, K,D) is an
ordinary harmonic measure of ω∗sh, which is defined using subharmonic (sh) functions:

ωsh(x,E,D) = sup {u(x) : u(x) ∈ sh(D), u|E ≤ 0, u|D ≤ 1} ,

ω∗sh(x,E,D) = lim
x′→x

ωsh(x
′, E,D), x ∈ D.

It is easy to see that χ(·, K,D) ≥ χ0(·, K,D) and χ(·, K,D) ≥ h(·, K,D).

Definition 1.3 (see [4] and [15]). A compact K ⊂ Rn is called H-regular at a point
a if for any b > 1 there exists M > 0 and an open neighbourhood V of point a such
that

‖p‖V ≤M bn‖p‖K , ∀ p ∈ Pn (Rn) , ∀n ∈ N,

where Pn (Rn) is the vector space of all harmonic polynomials of degree at most n. A
compact K is called H-regular if it is H-regular for every point a ∈ K.

H-regularity occupies a very important place in the theory of polynomial approx-
imation of harmonic functions (see [17], [6], [7] and [8]).

Lemma 1.1 (see [15]). Let D be an open subset in Rn and let E ⊂ D be compact.
Then for any τ ∈ (0, 1), ε ∈ (0, 1 − τ) and K a compact subset of Dτ there exists a
positive constant c = c(τ, ε,K,D) such that for any harmonic function f on D we
have

‖f‖K ≤ c‖f‖1−τ−εE ‖f‖τ+εD ,

where
Dτ := {x ∈ D : χ0(D,E, x) < τ} .

Remark 1.2. It is clear that if χ0(·, E,D) 6≡ 1, then E is the uniqueness set for
harmonic functions on D. We cannot replace the set Dτ by {x ∈ D : h(x,E,D) ≤ τ},
since there exist such compacts E that h(·, E,D) 6≡ 1 and E is not a uniqueness set
for harmonic functions on D.

Using the Zahariuta’s extremal functions Hecart proved the following theorem on
the analytic continuation of separately harmonic functions.

Theorem 1.1 (see [16]). Let D and G be domains from the space Rn and Rm re-
spectively, and two H-regular compacts E ⊂ D and F ⊂ G are given. Then any
separately harmonic function on the set

X = (E ×G) ∪ (D × F )
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continues harmonically into the domain

X̂ =
{

(x, y) ∈ D ×G : h̄(x,E,D) + h̄(y, F,G) < 1
}
,

where
h̄(x,E,D) = lim

s→+∞
h(x,E,Ds)

and Ds ↗ D, s→ +∞.
This theorem for the case n = m = 2 was previously proved by Zeriahi.

Theorem 1.2 (Zeriahi [12]). Let D × G be a domain of the space R2(x) × R2(y)
and let E ⊂ D, F ⊂ G be compact sets satisfying the H-regularity conditions in the
classes of harmonic polynomials. Then any separately harmonic function on the set

X = (E ×G) ∪ (D × F )

continues harmonically into the domain

X̂ = {(x, y) ∈ D ×G : ω∗sh(x,E,D) + ω∗sh(y, F,G) < 1} .

Here ω∗sh is an ordinary harmonic measure.

2 Main Results
Usually, for continuations of harmonic functions we first pass to holomorphic functions
and then use the principles of holomorphic continuations. The following lemma will
allow us to make such a transition, and which we will use quite often.

Lemma 2.1 (see [1] and [10]). Let us consider a space Rn(x), nested in Cn(z) =
Rn(x)+ i ·Rn(y), where z = (z1, ..., zn), zj = xj + i ·yj, j = 1, ..., n, and let D be some
bounded domain of Rn(x). Then there exists a domain D̂ ⊂ Cn(z) such that D ⊂ D̂

and for any function u(x) ∈ h(D), there exists a function fu(z) holomorphic in D̂
such that fu|D = u. Furthermore, for any number M > 1 there exists a subdomain
D̂M ⊂ D̂, D ⊂ D̂M , such that

‖fu‖D̂M
≤M‖u‖D

for all u ∈ h(D) ∩ L∞(D).

Using Lemma 2.1 and the continuation theorem for separately analytic functions,
the following theorem is proved.

Theorem 2.1 (Sadullaev and Imomkulov [10]). Let E ⊂ D ⊂ Rn and F ⊂ G ⊂ Rm

be compact sets that are nonpluripolar in the sense of subsets of spaces Cn(z) =
Rn(x) + i · Rn(y) and Cm(z) = Rm(x) + i · Rm(y). Then any separately harmonic
function u(x, y) on the set

X = (E ×G) ∪ (D × F )

continues harmonically into the domain

X̂ =
{

(x, y) ∈ D ×G : ω∗(x,E, D̂) + ω∗(y, F, Ĝ) < 1
}
.
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Here ω∗(z, E, D̂) and ω∗(w,F, Ĝ) are P -measures of the sets E and F with respect
to the domains D̂ and Ĝ, where E ⊂ D̂ ⊂ Cn, F ⊂ Ĝ ⊂ Cm (see [9]) and

ω∗(z, E, D̂) = lim
z′→z

ω(z′, E, D̂), z ∈ D̂,

where
ω(z, E, D̂) = sup

{
u(z) : u ∈ psh

(
D̂
)
, u|E ≤ 0, u|D̂ ≤ 1

}
.

In particular, an analogue of the Hartogs lemma for separately harmonic functions
can be obtained from this theorem.

Lemma 2.2. Let u(x, y) be a separately harmonic function in the domain

U × Vr = {x ∈ Rn : |x| < 1} ×
{
y ∈ R2 : |y| < r

}
⊂ Rn × R2

and for each fixed x0 ∈ U the function u(x0, y) of variable y continues harmonically
into the great circle {

y ∈ R2 : |y| < R
}
, R > r.

Then the function u(x, y) continues harmonically into the domain

U ×
{
y ∈ R2 : |y| < R

}
over the set of variables.

For a more accurate result in this direction, it is necessary to introduce a special
measure adapted to harmonic functions. As is known, the P -measure ω∗(z, E,D)
of the compact E ⊂ D for strongly pseudoconvex domains D ⊂ Cn can also be
determined using holomorphic functions:

ω(z, E,D) = sup {α ln |f(z)| : f ∈ O(D), ‖f‖E ≤ 1, ‖f‖αD ≤ e, α > 0} ,

ω∗(z, E,D) = lim
ζ→z

ω(ζ, E,D). (1)

The proof of relations (1) follows easily from the Bremermann theorem on the
approximation of plurisubharmonic functions by plurisubharmonic Hartogs functions
(see [9]).

As we noted above in Lemma 2.1, any harmonic function u ∈ h(D) continues
holomorphically into a fixed domain D̂ of the space Cn, D ⊂ Rn ⊂ Cn, D̂ ⊃ D and
there exists f ∈ O(D̂) such that f |D ≡ u. Moreover, by Lemma 2.1, the domain D̂
can be chosen such that

‖f‖D̂ ≤M‖u‖D,
where M is a constant independent of u.

From this we see that the quantity

γ∗(z, E, D̂) =

= lim
w→z

sup
{
α ln |f(w)| : f ∈ O(D̂), f |D ∈ h(D), ‖f‖E ≤ 1, ‖f‖α

D̂
≤ e, α > 0

}
,

which we will call h-measure, differs from the P -measure ω∗(z, E, D̂) only by the fact
that in its definition includes an additional harmonicity condition f |D. Nevertheless,
the sets of the zero h-measure are finer than the sets of the zero P -measure.

218



Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

Example 1. The a set S = {x ∈ Rn : |x| = 1
2
} ⊂ B(0, 1) the measure is γ∗(x, S,B) 6≡

1, but ω∗(z, S, B̂) ≡ 1.

The h-measure γ∗(x,E,D) is more suitable for accurate estimates in contrast to
the quantity h(x,E,D) which appears in the works of Hecart [15] and [16].

The following theorem holds.

Theorem 2.2. Let the function u(x, y) be separately harmonic in the domain

D × Vr = D ×
{
y ∈ R2 : |y| < r, r > 1

}
⊂ Rn × R2

and for each x0 ∈ D the function u(x0, y) of variable y continues harmonically into
the great circle {

y ∈ R2 : |y| < R(x0), R(x0) > r
}
.

Then the function u(x, y) continues harmonically into the domain{
(x, y) ∈ Rn × R2 : |y| < R∗(x), x ∈ D

}
over a set of variables, where the function ln 1

R∗(x)
is the trace of some plurisubhar-

monic function from the class H(D̂).

First, we define the following class of plurisubharmonic functions: H(D̂) is the
minimal class of plurisubharmonic functions that contains all functions of the form
α ln |f(z)|, where f(z) ∈ O(D̂) ∩ h(D), α > 0, and is closed with respect to the
operation “upper regularisation”, i.e., for any family uλ(z) ∈ H(D̂), λ ∈ Λ of locally
upper bounded functions, the function

u(z) = lim
ζ→z

sup {uλ(ζ) : λ ∈ Λ}

also belongs to the class H(D̂).
It is not difficult to verify that H(D̂) ⊂ psh(D̂) and H(D̂) 6= psh(D̂).
Let

u(z) = lim
j→+∞

uj(z),

where uj(z) ∈ psh(D̂) is a sequence of locally upper bounded plurisubharmonic func-
tions. Then the regularisation of the limit function u(z)

u∗(z) = lim
ζ→z

u(ζ)

is a plurisubharmonic function in the domain of functions uj(z). Sadullaev (see [9])
proved that the set {z : u(z) < u∗(z)} is pluripolar, and conversely any pluripolar
set is represented as a set of type {z : u(z) < u∗(z)}. Indeed, let u(z) is a plurisub-
harmonic function, where u(z) 6≡ −∞ and u(z)|E = −∞. Consider the sequence
uj(z) = 1

j
u(z). It is clear that

u(z) = lim
j→∞

uj(z) = 0
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almost everywhere and
u(z) = lim

j→∞
uj(z) = −∞

for all z ∈ E. It follows that

E ⊂ {z : u(z) < u∗(z)} .

So the inclusion E ⊂ {z : u(z) < u∗(z)} can be considered as an equivalent definition
of a pluripolar set.

If a sequence of functions uj(z) ∈ H(D̂) is locally uniformly upper bounded, then
the regularisation of the upper limit u∗(z), by definition, also belongs to the class
H(D̂). In this case, we call the pluripolar set E ⊂ {x ∈ D ⊂ Rn : u(x) < u∗(x)} an
h-pluripolar set.

It is clear that the pluripolar sets E1 and E2, where u|E1
= −∞, u(z) ∈ H(D̂),

u(z) 6≡ −∞ and γ∗(z, E2, D̂) ≡ 1, are also h-pluripolar.

Proof theorem 2.2. Let the function u(x, y) be separately harmonic in the domain
D×Vr. Consider the function u(·, y) as a function of the complex variable w = y1+iy2
(y = (y1, y2)), i.e., as a function u(·, w), w ∈ Vr ⊂ C ' R2, r > 1. Since the function
u(x,w) is harmonic with respect to w in the neighbourhood of the unit circle V1 ⊂ Vr,
therefore there is a decomposition into a Hartogs series:

u(x,w) = u(x, ρeiϕ) =
+∞∑

k=−∞

ck(x)ρ|k|eikϕ, (2)

where

ck(x) =
1

2π

2π∫
0

u(x, eiϕ)e−ikϕdϕ.

It is clear that the coefficients ck(x) ∈ h(D) and they are locally uniformly bounded,
i.e., for any K b D there exists a number N > 0, such that

|ck(x)| ≤ N,∀x ∈ K, ∀k ∈ Z.

From here, by virtue of Lemma 2.1, there exists a domain D̂ ⊂ Cn, such that D ⊂ D̂
and all coefficients holomorphically continue into D̂, i.e., there exist holomorphic
functions ĉk(z) ∈ O(D̂) ∩ h(D), such that ĉk(z)|D ≡ ck(x). Moreover, the sequence
of functions ĉk(z) is also locally uniformly bounded.

Hence, the sequence of plurisubharmonic functions

1

|k|
ln |ĉk(z)| ∈ H

(
D̂
)

is locally uniformly upper bounded and the function

υ∗(z) = lim
ζ→z

lim
k→+∞

1

|k|
ln |ĉk(z)|
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also belongs to the H(D̂) class. In addition, according to the conditions of the
theorem, for each fixed x ∈ D the next relation holds

lim
|k|→+∞

|k|
√
|ck(x)| = 1

R(x)
,

i.e., υ∗(z)|D = ln 1
R(x)

outside of some h-pluripolar set from the domain D. More
precisely

υ∗(x) ≡ ln
1

R∗(x)

in the domain D, since the domain D ⊂ Rn is not pluri-thin at any point x ∈ D.
According to the estimate from Lemma 2.1, the following series

û(z, w) =
+∞∑

k=−∞

ĉk(z)ρ|k|eikϕ
(
w = ρeiϕ, û(z, w)|D×Vr = u(x,w)

)
(3)

converges locally uniformly in the domain D̂×Vr and for each fixed z ∈ D̂ continues on
the variable w to a harmonic function in {w : |w| < e−υ

∗(z)}, where e−υ∗(x) = R∗(x),
x ∈ D.

Let us take now any point x0 ∈ D and number σ : r < σ < R∗(x
0). According

to the lower semi-continuity of the function R∗(x) there exists some δ-neighborhood
Uδ = {x : |x− x0| < δ} of a point x0 such that R(x) > σ for any x ∈ Uδ. Hence,
according to Lemma 2.2, we obtain that the function u(x,w) = u(x, y) contin-
ues harmonically into the domain Uδ × {y : |y| < σ} over the set of variables. Fi-
nally, from the arbitrariness of the point x0 ∈ D and the number σ : r < σ <
R∗(x

0) we obtain that the function u(x, y) continues harmonically into the domain
{(x, y) ∈ Rn × R2 : |y| < R∗(x), x ∈ D} and by definition the function ln 1

R∗(x)
is the

trace of the plurisubharmonic function υ∗(z) ∈ H(D̂).

Theorem 2.3. Let u(x, y) be separately harmonic function in the domain

D × Vr = D ×
{
y ∈ R2 : |y| < r, r > 1

}
⊂ Rn × R2

and for each fixed x0 ∈ E ⊂ D, where the set E is not h-pluripolar, the function
u(x0, y) of variable y continues harmonically over the all plane R2. Then the function
u(x, y) continues harmonically into the domain D × R2 over the set of variables.

Proof. Assuming, as in the proof of Theorem 2.2, for each fixed x ∈ D we decompose
the function

u(x, y) = u(x,w), w = y1 + iy2 (y = (y1, y2))

into the following Hartogs series

u(x,w) = u(x, ρeiϕ) =
+∞∑

k=−∞

ck(x)ρ|k|eikϕ, (4)
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where

ck(x) =
1

2π

2π∫
0

u(x, eiϕ)e−ikϕdϕ.

Clearly, the coefficients ck(x) ∈ h(D) and they are locally uniformly bounded. Hence,
by virtue of Lemma 2.1, there exists a domain D̂ ⊂ Cn such that D ⊂ D̂ and all
coefficients holomorphically continue into D̂ i.e., there exist holomorphic functions
with ĉk(z) ∈ O(D̂) ∩ h (D) such that ĉk(z)|D ≡ ck(x). Moreover, the sequence of
holomorphic functions ĉk(z) is also locally uniformly bounded. Hence, the sequence
of plurisubharmonic functions

1

|k|
ln |ĉk(z)| ∈ H

(
D̂
)

is locally uniformly upper bounded and the function

υ∗(z) = lim
ζ→z

lim
k→+∞

1

|k|
ln |ĉk(z)|

also belongs to the class H
(
D̂
)
. Moreover, by the conditions of theorem υ∗(z)|E =

−∞ and E is not h-pluripolar, therefore

υ∗(z) ≡ −∞

in the domain D̂, i.e. function

û(z, w) =
+∞∑

k=−∞

ĉk(z)ρ|k|eikϕ
(
w = ρeiϕ, û(z, w)|D×Vr = u(x,w)

)
(5)

for each fixed z ∈ D̂ continues on the variable w to function that is harmonic in the
all plane C. Finally, applying the Hartogs lemma (see [18], page 331, theorem 8) to
the sequence of functions

1

|k|
ln |ĉk(z)|

we obtain that the series (5) is locally uniformly convergent in the domain D̂ × C,
i.e., the series (4) is locally uniformly convergent in the domain D×C ≈ D×R2 and
its sum is a harmonic continuation of the function u(x, y).
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