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TRANSLATION-INVARIANT GIBBS MEASURES
FOR POTTS MODEL WITH COMPETING

INTERACTIONS WITH A COUNTABLE SET OF
SPIN VALUES ON CAYLEY TREE

Mustafoyeva Zarinabonu
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e-mail: mustafoyeva53@gmail.com

Abstract

In the present paper we consider of an infinite system of functional equations
for the Potts model with competing interactions and countable spin values
Φ = {0, 1, ..., } on a Cayley tree of order k. We study translation-invariant Gibbs
measures that gives the description of the solutions of some infinite system of
equations. For any k ≥ 1 and any fixed probability measure ν we show that
the set of translation-invariant splitting Gibbs measures contains one and two
points for odd k and even k, respectively, independently on parameters of the
Potts model with a countable set of spin values on a Cayley tree.

Keywords: Gibbs measure, Cayley tree, Potts model, Hamiltonian, nearest-
neighbor, countable spin values, configuration, functional equation, translation-
invariant solution, probability measure, competing interaction.
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Introduction
The Gibbs measure is a probability measure which has been an important object in
many problems of probability theory and statistical mechanics. It is the measure
associated with Hamiltonian of a physical system (model) [1].

The method used for the description of Gibbs measures on Cayley trees is the
method of Markov random field theory and recurrent equations of this theory, but
modern theory of Gibbs measures on trees uses new tools such as group theory,
contour methods on trees, non-linear analysis.

The most studied model of statistical mechanics is the Ising model, there are
about 1700 papers devoted to the problems related to Ising model. In particular,
this model plays a very special role in statistical mechanics and gives the simplest
nontrivial example of a system undergoing phase transitions [3], [5], [17], [18], [19].

The Potts model was introduced as a generalization of the Ising model. The idea
came from the representation of the Ising model as interacting spins which can be
either parallel or antiparallel. At present the Potts model encompasses a number of
problems in statistical physics and lattice theory (see, e.g., [2]). It has been a subject
of increasing research interest in recent years.

In [5] a countable state space Markov random fields and Markov chains on trees
were constructed and using of entrance laws for specifications Zachary extended and
generalized results of [3], [6].
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In [8] the ferromagnetic Potts model with three states on a second order Cayley
tree was studied and there was shown the existence of a critical temperature Tc such
that for T < Tc there are three translation-invariant Gibbs measures and uncount-
able Gibbs measures, which are not translation-invariant. In [12], the results of [8]
were generalized for the Potts model with a finite number of states on a Cayley tree
of arbitrary (finite) order. It was proved in [9] that the translation-invariant Gibbs
measure of the antiferromagnetic Potts model with an external field is unique on the
Cayley tree. [10] was devoted to the Potts model with countable many states and a
non-zero external field on the Cayley tree. It was proved that this model has a unique
translation-invariant Gibbs measure. In [7] the Potts model with a countable set of
spin values on Zd was studied. Moreover, [23] is devoted to discussing many applica-
tions of the Potts model to real world situations, such as biology, physics, and some
examples of alloy behavior, cell sorting, financial engineering, image segmentation,
medicine, sociology and given a systematic review of the theory of Gibbs measures
of Potts model on Cayley trees.

In [22] all translation-invariant splitting Gibbs measures (TISGMs) were found on
the Cayley tree for the Potts model, in particular, it was shown that at sufficiently
low temperatures their number is equal to 2q − 1. It was proved that there were
[ q
2
] critical temperatures and the exact amount of TISGMs for each temperature was

given and in [24] the regions of non-extremality of these measures were found.

In [11] it was considered a nearest-neighbor Potts model, with countable spin
values Φ = {0, 1, ..., } and non-zero external field, on a Cayley tree of order k (with
k+1 neighbors). Also it was given full description of the class of probabilistic measures
ν on Φ and in particular it was described the Poisson measures which are Gibbsian.

Ground states for Potts model with a countable set of spin values on a Cayley
tree were considered in [14], [15], [16] and [21].

The chapter 8 in [4] was devoted to a nearest-neighbor Potts model with countable
spin values 0, 1, ..., and non-zero external field on a Cayley tree of order k and studied
translation-invariant Gibbs measures which depend on k and a probability measure ν.
In [13] an infinite system of functional equations for the Potts model with competing
interactions of radius r = 2 and countable spin values on a Cayley tree of order two
were given and the exact value of the exponential solutions were described such that
ui = ai for some a ∈ (0, 1) and the corresponding measure ν.

In this paper, we describe of an infinite system of functional equations for the
Potts model with competing interactions on a Cayley tree and give full analysis of
the system of equations (12) below.

1 Main definitions and known facts

The Cayley tree (Bethe lattice) Γk of order k ≥ 1 infinite tree, i.e., a graph without
cycles, such that exactly k+1 edges originate from each vertex. Let Γk = (V, L) where
V is the set of vertices and L the of edges. Two vertices x and y are called nearest-
neighbors if there exists an edge l ∈ L connecting them and we denote l =< x, y >.
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A collection of nearest neighbor pairs < x, x1 >,< x1, x2 >, ..., < xd−1, y > is called
a path from x to y. The distance d(x, y) on the Cayley tree is the number of edges of
the shortest path from x and y.

For a fixed x0 ∈ V , called the root, we set

Wn = {x ∈ V |d(x, x0) = n}, Vn =
n⋃

m=0

Wm

and denote
S(x) = {y ∈ Wn+1 : d(x, y) = 1}, x ∈ Wn,

the set of direct successors of x.
The vertices x and y are called next-nearest-neighbor (NNN) which is denoted by

> x, y <, if there exists a vertex z ∈ V such that x, z and y, z are nearest-neighbor.
We consider NNN > x, y <, for which there exist n such that x ∈ Wn and y ∈ Wn+2,
this kind of NNN is considered with the three states Potts model (see [20]).

It is well-known that there exists a one-to-one correspondence between the set V
of vertices of the Cayley tree of order k ≥ 1 and the group Gk of the free products of
k + 1 cyclic groups of second order with generators a1, a2, ..., ak+1 (see [4], p.3).

For each x ∈ Gk, let S1(x) denote the set of all neighbors of x, i.e., S1(x) = {y ∈
Gk :< x, y >∈ L}. The set S1(x)\S(x) is a singleton.

We consider a Potts model with competing nearest-neighbor and prolonged next-
nearest-neighbor interactions on a Cayley tree where the spin takes values in the set
Φ := 0, 1, 2, .... A configuration σ on V is then defined as a function x ∈ V 7−→
σ(x) ∈ Φ; the set of all configurations is ΦV .

Let Gk
∗ be a subgroup of index r ≥ 1. We consider the right coset Gk \ Gk

∗ =
{H1, H2, ..., Hr}.

Definition 1. A configuration σ(x) is said to be Gk
∗ − periodic if σ(x) = σi for all

x ∈ Gk with x ∈ Hi. A Gk-periodic configuration is said to be translation-invariant.

The Hamiltonian of the Potts model with competing interactions has the form

H(σ) = −J
∑
<x,y>
x,y∈V

δσ(x)σ(y) − J1

∑
>x,y<
x,y∈V

δσ(x)σ(y), (1)

where J, J1 ∈ R are coupling constants and δ is the Kroneker’s symbol:

δuv =

{
1, u = v,
0, u 6= v.

For A ⊂ V denote by ΦA the configuration space on A. Let h : x 7−→ hx =
(h0,x, h1,x, ...) ∈ R∞ be a real sequence-valued function of x ∈ V \ {x0}.

Fix a probability measure ν = {ν(i) > 0, i ∈ Φ}.
Given n = 1, 2, ..., consider the probability distribution µn on ΦVn defined by
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µ(n)(σn) = Z−1
n exp

(
−βH(σn) +

∑
x∈Wn

hσ(x),x

) ∏
x∈Vn

ν(σ(x)). (2)

Here, σn : x ∈ Vn 7−→ σ(x) and Zn is the corresponding partition function:

Zn =
∑

σ̃n∈ΦVn

exp

(
−βH(σ̃n) +

∑
x∈Wn

hσ̃(x),x

) ∏
x∈Vn

ν(σ̃(x)).

Remark 1. Note that Zn is the finite, since ν is a probability measure and exp(−βH(σ̃n)+∑
x∈Wn

hσ̃(x),x) is bounded on ΦVn.

As usual, the probability distributions µ(n) are compatible if for any n ≥ 1 and
σn−1 ∈ ΦVn−1 : ∑

ωn∈ΦWn

µ(n)(σn−1 ∨ ωn) = µ(n−1)(σn−1). (3)

Here σn−1 ∨ ωn ∈ ΦVn is the concatenation of σn−1 and ωn.
The following theorem describes conditions on hx guaranteeing compatibility of

distributions µ(n)(σn).

2 Functional Equations

Theorem 1. Probability distributions µ(n)(σn) , n = 1, 2, ..., in (2), for a Cayley tree
of order two, are compatible iff for any x ∈ V \{x0} the following equation holds:

h∗i,x = Fi(h
∗
y, h

∗
z, β, J), i = 1, 2, ..., (4)

where S(x) = {y, z}, h∗x = (h1,x − h0,x + ln ν(1)
ν(0)

, h2,x − h0,x + ln ν(2)
ν(0)

, ...) and

Fi(h
∗
y, h

∗
z, β, J) = ln

1 +
∞∑

p,q=0
p+q 6=0

exp
{
βJ(δip + δiq) + J1βδpq + h∗p,y + h∗q,z

}
1 +

∞∑
p,q=0
p+q 6=0

exp
{
βJ(δ0p + δ0q) + J1βδpq + h∗p,y + h∗q,z

} .

Proof. Necessity Assume that (3) holds; we will prove (4). Substituting (2) in (3),
obtain that for any configurations σn−1 : x ∈ Vn−1 7−→ σn−1(x) ∈ Φ:

1

Zn

∑
σ(n)∈ΦWn

exp

{
−βHn(σn) +

∑
x∈Wn

hσ(x),x

}
×

∏
y∈Vn−1

ν(σ(y))
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=
1

Zn−1

exp

−βHn−1(σn−1) +
∑

x∈Wn−1

hσn−1(x),x

 .

∑
σ(n)∈ΦWn

exp

−βHn−1(σn−1) + Jβ
∑

x∈Wn−1

y,z∈S(x)

(
δσ(x)σ(y) + δσ(x)σ(z)

)
+ J1β

∑
x∈Wn−1

y,z∈S(x)

δσ(y)σ(z) +
∑
x∈Wn

hσ(x),x



×
∏
y∈Wn

ν(σ(y)) =
Zn
Zn−1

exp

−βHn−1(σn−1) +
∑

x∈Wn−1

exphσn−1(x),x

 .

Consequently, for any i ∈ Φ,

exp
{
h0,y + h0,z + 2 ln ν(0)

}
+

∞∑
p,q=0
p+q 6=0

exp
{
Jβ(δip + δiq) + J1βδpq + hp,y + hq,z + ln ν(p) + ln ν(q)

}
exp

{
h0,y + h0,z + 2 ln ν(0)

}
+

∞∑
p,q=0
p+q 6=0

exp
{
Jβ(δ0p + δ0q) + J1βδpq + hp,y + hq,z + ln ν(p) + ln ν(q)

}

= exp
{
hi,x − h0,x

}
,

such that:

h∗i,x = ln

1 +
∞∑

p,q=0
p+q 6=0

exp
{
Jβ(δip + δiq) + J1βδpq + h∗p,y + h∗q,z

}
1 +

∞∑
p,q=0
p+q 6=0

exp
{
Jβ(δ0p + δ0q) + J1βδpq + h∗p,y + h∗q,z

} ,

where:
h∗i,x = hi,x − h0,x + ln

ν(i)

ν(0)
.

Sufficiency. Let (4) is satisfied we will prove (3).

∞∑
p,q=0

exp
{
Jβ(δip+δiq)+J1βδpq+hp,y+hq,z+ln ν(p)+ln ν(q)

}
= a(x) exp

{
hi,x
}
, (5)

here i = 0, 1, ....
We have

LHS of (3) =
1

Zn
exp

{
− βHn−1(σn−1)

} ∏
x∈Wn−1

ν(σ(x))×
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∑
x∈Wn−1

y,z∈S(x)

exp
{
Jβ
(
δσ(x)σ(y) + δσ(x)σ(z)

)
+ J1βδσ(y)σ(z) + hσ(y),y + hσ(z),z

}
. (6)

Substituting (5) into (6) and denoting An =
∏

x∈Wn−1

a(x), we get:

RHS of (3.3) =
An1

Zn
exp

{
− βHn−1(σn−1)

} ∏
x∈Wn−1

ν(σ(x)). (7)

Since µ(n), n ≥ 1 is a probability, we should have:

∑
σn−1

(n)∑
σ

µ(n)
(
σn−1, σ

(n−1)
)

= 1.

Hence, from (7) we obtain Zn−1An−1 = Zn, and (3) holds.

3 Translation-invariant solutions
Let, hx = h = (h1, h2, ...) for any x ∈ V . We rewrite (4) as the following form:

hi = ln
ν(i)

ν(0)
+ k ln

1 +
∞∑

p,q=0
p+q 6=0

exp
{
βJ(δip + δiq) + J1βδpq + h∗p + h∗q

}
1 +

∞∑
p,q=0
p+q 6=0

exp
{
βJ(δ0p + δ0q) + J1βδpq + h∗p + h∗q

} . (8)

From following determine ui = exp(hi), i = 1, 2, ... we have

ui =
ν(i)

ν(0)
·


1 +

∞∑
p,q=0
p+q 6=0

exp {βJ(δip + δiq) + J1βδpq}upuq

1 +
∞∑

p,q=0
p+q 6=0

exp {βJ(δ0p + δ0q) + J1βδpq}upuq


k

, i ∈ N. (9)

Using the following expressions:

eβJ(δip+δiq)+J1βδpqupuq = θ2θ1u
2
i when p = q = i;

∞∑
p 6=i,q=i

eβJ(δip+δiq)+J1βδpqupuq = θui

∞∑
p>0
p 6=i

up;

∞∑
q 6=i,p=i

eβJ(δip+δiq)+J1βδpqupuq = θui

∞∑
q>0
q 6=i

uq;
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∞∑
p 6=q 6=i

eβJ(δip+δiq)+J1βδpqupuq =
∞∑
p>0
p 6=i

(up

∞∑
q>0
q 6=i

θpq1 uq);

we rewrite (9) as

ui =
ν(i)

ν(0)
·


1 + θ2θ1u

2
i + θui

∞∑
p>0
p 6=i

up + θui
∞∑
q>0
q 6=i

uq +
∞∑
p>0
p 6=i

(up
∞∑
q>0
q 6=i

θ
δpq
1 uq)

1 + θ2θ1u2
0 + θu0

∞∑
p>0

up + θu0

∞∑
q>0

uq +
∞∑
p>0

(up
∞∑
q>0

θ
δpq
1 uq)


k

(10)

where θ = exp(Jβ), θ1 = exp(J1β).

∞∑
p>0
p 6=i

(up

∞∑
q>0
q 6=i

θ
δpq
1 uq) =

∞∑
p>0
p 6=i

up

{in case p = q}θ1up +
∞∑
q>0

q 6=i,p 6=q

uq

 =

= θ1

∞∑
p>0
p6=i

u2
p +

∞∑
p>0
p 6=i

up ·
∞∑
q>0

q 6=i,p 6=q

uq (11)

and u0 = 1. From (11) we rewrite

∞∑
p>0
p 6=i

up ·
∞∑
q>0

q 6=i,p 6=q

uq =
∞∑
p>0
p 6=i

up ·

 ∞∑
q>0
q 6=i

uq − up

 =
∞∑
p>0
p 6=i

up ·
∞∑
q>0
q 6=i

uq −
∞∑
p>0
p 6=i

u2
p.

and we get

ui =
ν(i)

ν(0)
·


1 + θ2θ1u

2
i + θui

 ∞∑
p>0
p 6=i

up +
∞∑
q>0
q 6=i

uq

+ (θ1 − 1)
∞∑
p>0
p 6=i

u2
p +

∞∑
p>0
p 6=i

up ·
∞∑
q>0
q 6=i

uq

1 + θ2θ1 + θ

(
∞∑
p>0

up +
∞∑
q>0

uq

)
+ (θ1 − 1)

∞∑
p>0

u2
p +

∞∑
p>0

up ·
∞∑
q>0

uq



k

(12)
or

ui =
ν(i)

ν(0)
·


1 +

θ2θ1(u2
i − 1) + θ

 ∞∑
p>0
p 6=i

up +
∞∑
q>0
q 6=i

uq

 (ui − 1)

1 + θ2θ1 + θ

(
∞∑
p>0

up +
∞∑
q>0

uq

)
+ (θ1 − 1)

∞∑
p>0

u2
p +

∞∑
p>0

up ·
∞∑
q>0

uq



k

.
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Let
∞∑
p>0
p 6=i

up =∞ and
∞∑
q>0
q 6=i

uq =∞ . From the last equation we get

ui =
ν(i)

ν(0)
, i = 1, 2, ... (13)

Since
∞∑
j=0

ν(j) = 1 by (13) we have

∞∑
j=1

uj =
1− ν(0)

ν(0)
< +∞.

Thus there is no solution of (12) with
∞∑
p>0
p 6=i

up =∞ and
∞∑
q>0
q 6=i

uq =∞ .

Let p > q and
∞∑
p>0

up = S < +∞,
∞∑
q>0
q 6=i

uq = A + S < +∞,
∞∑
p>0

u2
p = B < +∞,

where S,A and B are some fixed positive numbers. It is easy to see that A =
uq + uq+1 + ...+ up−1.

In this case we obtain from (12)

ui =
ν(i)

ν(0)
·
(

1 + θ2θ1u
2
i + θui(A+ 2S − 2ui) + (θ1 − 1)(B − u2

i ) + (S − ui)(A+ S − ui)
1 + θ2θ1 + θ(A+ 2S) + (θ1 − 1)B + S(A+ S)

)k
.

(14)
Denote ηi = ν(0)

ν(i)
and Bi = ηi (1 + θ2θ1 + θ(A+ 2S) + (θ1 − 1)B + S(A+ S))

k.
Then from (14) we obtain

Biui =
(
(2− 2θ − θ1)u2

i + (θ2θ1 + (A+ 2S)(θ − 1))ui + 1 + (θ1 − 1)B + AS + S2
)k
.

(15)
Assuming θ1 ≥ 1, we conclude Bi > 0. We will consider cases k = 1 and k = 2

separately.

Let k = 1. Then from (15)

Biui = (2− 2θ− θ1)u2
i + (θ2θ1 + (A+ 2S)(θ− 1))ui + 1 + (θ1− 1)B+AS +S2. (16)

Case θ = θ1 = 1. From (16) we have the following equation

Biui = −u2
i + ui + 1 + AS + S2

and one positive solution:

ui =
−(Bi − 1) +

√
(Bi − 1)2 + 4(1 + AS + S2)

2

Case θ = 1 and θ1 > 1. In this case from (16) we get

Biui = −θ1u
2
i + θ1ui + 1 + AS + S2 + (θ1 − 1)B,
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accordingly

ui =
−(Bi − θ1) +

√
(Bi − θ1)2 + 4θ1(1 + AS + S2 + (θ1 − 1)B)

2θ1

> 0.

Case θ > 1 and θ1 ≥ 1. Denote

a = 2− 2θ − θ1, b = θ2θ1 + (A+ 2S)(θ − 1), c = 1 + (θ1 − 1)B + AS + S2 (17)

It can be seen easily that a < 0 and c > 0 for this case. Then we can conclude
that the discriminant of equation (16) is (b−Bi)

2 − 4ac > 0 and have one solution

ui =
−(b−Bi)−

√
(b−Bi)2 − 4ac

2a

which is positive.
For all cases above we have unique solution of (16) for k = 1.

Let k = 2. Then

Biui =
(
(2− 2θ − θ1)u2

i + (θ2θ1 + (A+ 2S)(θ − 1))ui + 1 + (θ1 − 1)B + AS + S2
)2
.

(18)
Case θ = θ1 = 1. From (18) we rewrite

Biui = (−u2
i + ui + 1 + AS + S2)2. (19)

We will find critical points of a function f(ui) = (−u2
i + ui + 1 + AS + S2)2:

ui1 =
1

2
, ui2 =

1 +
√

1 + 4(1 + AS + S2)

2
> 0, ui3 =

1−
√

1 + 4(1 + AS + S2)

2
< 0.

Since that the left side of equation (19) is linear increasing function, we can conclude
that equation (18) has two positive solutions.

Case θ = 1 and θ1 > 1. As the above case, it is also used critical points to
analyze the number of solutions of (18) for this case:

Biui =
(
−θ1u

2
i + θ1ui + 1 + AS + S2 + (θ1 − 1)B

)2

and
f ′(ui) =

((
−θ1u

2
i + θ1ui + 1 + AS + S2 + (θ1 − 1)B

)2
)′

= 0.

We have

ui1 =
1

2
, ui2 =

θ1 +
√
θ2

1 + 4θ1(1 + AS + S2 + (θ1 − 1)B)

2θ1

> 0,

ui3 =
θ1 −

√
θ2

1 + 4θ1(1 + AS + S2 + (θ1 − 1)B)

2θ1

< 0.

and conclude that equation (18) has two positive solutions.
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Case θ > 1 and θ1 ≥ 1. In this case using (17) we get the following critical
points and two positive solutions of (18):

ui1 =
−b
2a

> 0, ui2 =
−b−

√
b2 − 4ac

2a
> 0, ui3 =

−b+
√
b2 − 4ac

2a
< 0

We can say from the above cases, we have two solutions of (18) that are concluded
using critical points for k = 2.

Now we will analyze equation (15) by dividing into two cases: k is odd and k is
even separately.

Let k is odd. Then we will analyze function

f(ui) =
(
(2− 2θ − θ1)u2

i + (θ2θ1 + (A+ 2S)(θ − 1))ui + 1 + (θ1 − 1)B + AS + S2
)k
.

(20)
Case θ = 1 and θ1 ≥ 1. In this case the following function from (20)

f(ui) =
(
−θ1u

2
i + θ1ui + 1 + AS + S2 + (θ1 − 1)B

)k
is increasing for ui < 1

2
and we conclude that (15) has unique positive solution.

Case θ > 1 and θ1 ≥ 1. In this case the function (20) is increasing for

ui < −
θ2θ1 + (A+ 2S)(θ − 1)

2(2− 2θ − θ1)

and equation (15) has unique positive solution.

Let k is even.
Case θ = 1 and θ1 ≥ 1. In this case the derivative of the equation (20) is

f ′(ui) = k(−2θ1ui + θ1)
(
−θ1u

2
i + θ1ui + 1 + AS + S2 + (θ1 − 1)B

)k−1
.

The function (20) is increasing when{
−2θ1ui + θ1 > 0
−θ1u

2
i + θ1ui + 1 + AS + S2 + (θ1 − 1)B > 0,

and {
−2θ1ui + θ1 < 0
−θ1u

2
i + θ1ui + 1 + AS + S2 + (θ1 − 1)B < 0

systems are satisfied.
Solving the systems above, we have two positive solutions of (15) for ui1 ∈ (0, 1

2
)

and ui2 ∈
(
θ1+
√
θ21+4θ1(1+AS+S2+(θ1−1)B)

2θ1
; +∞

)
.

Case θ > 1 and θ1 ≥ 1. In this case, using the same method of the previ-
ous case, we can see the function (20) is increasing for ui1 ∈ (0,− b

2a
) and ui2 ∈(

−b−
√
b2−4ac

2a
; +∞

)
, since a < 0, b > 0, c > 0 where a, b and c are in (17).

Summarising, we obtain the following
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Theorem 2. If θ ≥ 1 and θ1 ≥ 1, then for any β > 0 and any fixed probability
measure ν on Φ the model (1) has

(1) a unique translation-invariant splitting Gibbs measure if k is odd;

(2) two translation-invariant splitting Gibbs measures if k is even.

Remark 2. In [13] we gave a description of the class of measures ν on Φ such
that respect to each element of this class the infinite system of equations has unique
solution {ai, i = 1, 2, ...}, where a ∈ (0, 1).
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