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Abstract

In this paper, we shall discuss the construction of Gibbs measures for models
with uncountable set of spin values on Cayley trees. From [22] it is known that
"translation-invariant Gibbs measures" of the model with an uncountable set
of spin values can be described by positive fixed points of a nonlinear integral
operator of Hammerstein type. The problem of constructing a kernel with non-
uniqueness of the integral operator is sufficient in Gibbs measure theory. In
this paper, we construct a degenerate kernel in which the number of solutions
does not exceed 3, and in turn, it only gives us a chance to check the existence
of phase transitions.

Keywords: Cayley tree, cylinder sets, Kolmogorov’s extension theorem,
spin values, non-probability measures.
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Introduction

Foundations of measure theory provide little support for compositional reasoning.
Standard formalizations of iterative processes prefer to construct a single monolithic
sample space from which all random choices are made at once. The central result in
this regard is the Kolmogorov’s extension theorem, which identifies conditions under
which a family of measures on finite subproducts of an infinite product space extend
to a measure on the whole space. This theorem is typically used to construct a large
sample space for an infinite iterative process when the behavior of each individual
step of the process is known (see [2, 19]).

Gibbs measures for models with an uncountable set of spin values on lattice sys-
tems requires some additional considerations compared to models with a countable
set of spin values. The construction of Gibbs measures for models with an uncount-
able set of spin values on lattice systems is an active area of research in statistical
mechanics and mathematical physics. Different techniques and methods have been
developed to tackle specific models and situations, and there is still ongoing work to
fully understand the properties and behavior of these measures (e.g. [22]).

In lattice systems with an uncountable set of spin values, such as real-valued
spins, the traditional approach of defining the Gibbs measure as a product measure
on the lattice may not be applicable. This is because the product measure may not
be well-defined due to the infinite product of probability measures.
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One common approach to construct Gibbs measures for such models is to use the
concept of conditional probabilities. The idea is to define the Gibbs measure as a
collection of conditional probability measures, where each spin value is assigned a
conditional probability given the values of neighboring spins. (e.g., [13, 14]).

The paper deals with the problem of constructing kernels of Hammerstein-type
equations whose positive solutions are not unique. This problem arises from the the-
ory of Gibbs measures, and each positive solution of the equation corresponds to one
translation-invariant Gibbs measure. Also, the problem of finding kernels for which
the number of positive solutions to the equation is greater than one is equivalent to
the problem of finding models which has phase transition. The problem of construct-
ing kernels of the equation for which there are at least two positive solutions is also
studied in [16, 10, 11, 12, 4]. In these articles, the number of solutions corresponding
to the constructed kernels does not exceed 3, and in turn, it only gives us a chance
to check the existence of phase transitions. The constructed kernels in this paper
are more general than kernels in the above-mentioned papers and except for checking
phase transitions, it allows us to classify the set of Gibbs measures.

1 Cylindric sets on Cayley trees

The Cayley tree =k = (V, L) of order k ≥ 1 is an infinite tree, i.e. graph without
cycles, each vertex of which has exactly k + 1 edges. Here V is the set of vertices of
=k va L is the set of its edges.

Consider models where the spin takes values in the set Φ (finite or denumerable),
and is assigned to the vertices of the tree. For A ⊂ V a configuration σA on A is
an arbitrary function σA : A → Φ. Let ΩA = ΦA be the set of all configurations on
A. A configuration σ on V is defined as a function x ∈ V 7→ σ(x) ∈ Φ; the set of
all configurations is Ω := ΦV . We consider all elements of V are numerated (in any
order) by the numbers: 0, 1, 2, 3, .... Namely, we can write V = {x0, x1, x2, ....} (detail
in [3, 20, 21]).

Let XA be the indicator function. Ω can be considered as a metric space with
respect to the metric ρ : Ω× Ω→ R+ given by

ρ
(
{σ(xn)}xn∈V , {σ

′(xn)}xn∈V
)

=
∑
n≥0

2−nXσ(xn)6=σ′(xn)

(or any equivalent metric the reader might prefer, this metric taken from [13]), and
let B be the σ-field of Borel subsets of Ω.

For each m ≥ 0 let πm : Ω → Φm+1 be given by πm (σ0, σ1, σ2, ...) = (σ0, . . . , σm)
and let Cm = π−1

m (P (Φm+1)), where σi := σ(xi) and P (Φm+1) is the family of all
subsets of Φm+1 (Cartesian product of Φ). Then Cm is a field and each of the sets in Cm
is open and closed set in the metric space (Ω, ρ); also Cm ⊂ Cm+1. Let C =

⋃
m≥0 Cm;

then C is a field (the field of cylinder sets) and each of the sets in C is both open
and closed. Denote S(C) - the smallest sigma field containing C. Every element of
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S(C) is called “measurable cylinder". Put

σ(m)(q) =
{
σ ∈ Ω : σ

∣∣
{xm}

= q ∈ Φ
}
.

Definition 1. A measurable space (X, E) is said to be countably generated if E = σ(I)
for some countable subset I of E.

Proposition 1. [15] B = S(C) = S
({
σ(m)(q) : m ≥ 0, q ∈ Φ

})
and in particular if

|Φ| <∞ then (Ω,B) is countably generated.

Proof. Let O be the set of all open subsets of Ω. Then C (if |Φ| < ∞ then C is a
countable set) a base for the topology on the metric space (Ω, ρ). Also, since C is the
field, each O ∈ O can be written as a union of elements from C. Hence O ⊂ S(C) and
thus B = S(O) ⊂ S(S(C)) = S(C), i.e., B = S(C). Moreover, each element of C can
be written as a finite intersection of elements from the set

{
σ(m)(q) : m ≥ 0, q ∈ Φ

}
and it therefore follows that

C ⊂ S
({
σ(m)(q) : m ≥ 0, q ∈ Φ

})
.

This implies that B = S
({
σ(m)(q) : m ≥ 0, q ∈ Φ

})
.

For a fixed x0 ∈ V we put

Wn =
{
x ∈ V | d

(
x, x0

)
= n

}
, Vn =

n⋃
m=0

Wm,

where d(x, y) is the distance between the vertices x and y on the Cayley tree, i.e. the
number of edges of the shortest walk (i.e., path) connecting vertices x and y.

For any fixed configuration σA ∈ ΩA, A ⊂ V we denote:

σ̄A :=
{
σ ∈ Ω : σ

∣∣
A

= σA
}
.

Corollary 1. [15] B = S ({σ̄Vn : n ∈ N0}).

Proof. By Proposition 1 we have

σ̄Vn =
⋂
si∈Vn

σ(si)(σ̄Vn(si)) ∈ S({σ(m)(q) : m ≥ 0, q ∈ Φ}) = B.

Then for all n ∈ N we obtain that σ̄Vn ∈ B, i.e. S ({σ̄Vn : n ∈ N}) ⊆ B.
On the other hand, we show that B ⊆ S ({σ̄Vn : n ∈ N}) . Let m0 ≥ 0 and we can

find n0 ∈ N such that xm0 ∈ Vn0 . If bases of cylinder sets ω̄Vn0
, ν̄Vn0

coincide with
each other only at {xm0} and its value be q0 ∈ Φ then we obtain that

σ(m0)(q0) = ω̄Vn0
∩ ν̄Vn0

∈ S ({σ̄Vn : n ∈ N}) .

From m0 and q0 are arbitrary numbers and Proposition 1 we can conclude that
B ⊆ S ({σ̄Vn : n ∈ N}) .

Note that Corrollary 1 is very important in the theory of Gibbs measures (see
[20, 21]) and a family of sets {Vn}∞n=1 is also cofinal sets [14].
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2 Lattice system has Kolmogorov property
In this section, we use notations of the previous sections.

Definition 2. For each Λ ∈ N let µΛ be a measure. The family of measures {µΛ}Λ∈N
is said to be consistent (compatible) if µΛ(FΛ) = µ∆(F∆) for all FΛ = F∆ ∈ BΛ

whenever Λ ⊂ ∆.

There are several versions of Kolmogorov’s extension theorem for probability mea-
sures. But some problems reduced to Kolmogorov’s theorem for non-probability mea-
sures (e.g., [18]). Actually, we can not apply the theorem for any infinite measures.
But in this section we give Kolmogorov’s extension theorem for a certain class of
infinite measures.

Note that Ωn = ΩVn and Bn is the σ-ring of all Borel sets of Ωn. Also, µn is a
measure on (Ωn,Bn), n ∈ N.

If all An can be chosen in π−1
m (Bm) for fixed m, then we have

Theorem 1. [15] If one of measures {µn}∞n=1, say µn0, is σ-finite, then {µn}
∞
n=1 can

be extended uniquely to a σ-additive measure on B.

Let Ω be a non-empty set and (Ω,⊆) is a partially ordered set (poset). The poset
Ω is said to be complete if each non-empty subset of Ω possesses a least upper
bound. If {zn}n≥1 is an increasing sequence of elements from Ω then limn zn :=

sup ({zn : n ≥ 1}). So Σ =
(
V,N ,Ω,

{
FΛ
}

Λ∈N

)
is a lattice system. Namely, N

equipped with a directed, countably generated partial order ⊆, and a decreasing
family F = {FΛ}Λ∈N of sub-σ-algebras of F .

Suppose for each Λ ∈ N we have a strict FΛ-measurable quasi-probability kernel
ζΛ ∈ K(FΛ). Then the family V = {ζΛ}Λ∈N will be called an F-specification if
ζ∆ = ζ∆ζΛ whenever Λ,∆ ∈ N with Λ ⊆ ∆. Let V = {ζΛ}Λ∈N be an F-specification;
then a probability measure µ ∈ P(F) is called a Gibbs state with specification V
if µ = µζΛ for each Λ ∈ N . Note that this definition of Gibbs states originates from
Dobrushin [5, 6, 7, 8], and Lanford and Ruelle [17, 23].

Definition 3. Let PΛ : Ω → R := R ∪ {−∞,∞} be FΛ-measurable mapping for all
Λ ∈ N , then the collection P = {PΛ}Λ∈N is called a potential. Also, the following
expression

H∆,P (σ)
def
=

∑
∆∩Λ6=∅,Λ∈N

PΛ(σ), ∀σ ∈ Ω. (1)

is called Hamiltonian H associated to the potential P .

Put
r(P )

def
= inf {R > 0 : PΛ ≡ 0 for all Λ with diam(Λ) > R} .

If r(P ) <∞, P has finite range and H∆;P is well defined. If r(P ) =∞, P has infinite
range and, for the Hamiltonian to be well defined, we will assume that P is absolutely
summable in the sense that ∑

Λ∈N ,x∈Λ

‖PΛ‖∞ <∞, ∀x ∈ V,
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(remember that ‖f‖∞
def
= supω |f(ω)|

)
which ensures that the interaction of a spin

with the rest of the system is always bounded, and therefore that ‖H∆;P‖∞ <∞.
Let N1 = {Vn : n ∈ N} then we define the following Hamiltonian in the box

Vn, n ∈ N:
Hn(σ) =

∑
n

PVn(σ), ∀σ ∈ Ω. (2)

Let us define a specification ζH =
{
ζHVn
}
n∈N (in short ζHVn := ζHn ) such that ζHVn(· |

ω) gives to each configuration τVnω
c
Vn

a probability proportional to the Boltzmann
weight prescribed by equilibrium statistical mechanics (see e.g. [13]):

ζPn (ω, σn)
def
=

1

Zωn
e−Hn(σnωV̄n), (3)

where we have written explicitly the dependence on ωV̄n , and Zωn is a partition func-
tion, i.e.,

Zωn
def
=

∑
σn∈ΩVn

exp (−Hn (σnωV̄n)) .

Theorem 2. If F1 :=
{
ζPn
}
n∈N then F1 is a specification.

Proof. For a fixed m,n ∈ N with Vn ⊂ Vm b V , we show that ζPmζPn = ζPm. Let
A ⊂ P(ΩVn). At first, we consider the case A = {σVn}, i.e.,

ζmζn(ω, σVn) =
∑
τVm

ζm (ω, τVm) ζn
(
τVmωV c

m
, σVn

)
=
∑
τVm

ζm (ω, τVm) ζn
(
τVm\VnωV c

m
, σVn

)
.

From the last equation, for any A ⊂ P(ΩVn) we obtain

ζmζn(A | ω) =
∑
τVm

∑
η∆

1A
(
ηVnτVm\VnωV c

m

)
ζm (ω, τVm) ζn

(
τVm\VnωV c

m
, ηVn

)
.

For any configuration τVm which defined on Vm we rewrite this configuration as a
combination of τ ′Vn on Vn and τVm\Vn on Vm\Vn, i.e. τVm = τ ′Vn ∨ τ

′′
Vm\Vn . By (3), RHS

of the last equation can be rewritten as:

∑
τ ′′
Vm\Vn

∑
ηVn

1A
(
ηVnτ

′′
Vm\VnωV c

m

) e−HVn(ηVnτ ′′Vm\VnωV c
m)

Zm
(
ωV c

m

)
Zn

(
τ ′′Vm\VnωV c

m

)∑
τ ′Vn

e−HVm(τ ′Vnτ
′′
Vm\Vn

ωV c
m).

It’s easy to check that the following expression

Hm

(
τ ′Vnτ

′′
Vm\VnωV c

m

)
−Hn

(
τ ′Vnτ

′′
Vm\VnωV c

m

)
does not depend on τ ′Vn . That’s why we have

Hm

(
τ ′Vnτ

′′
Vm\VnωV c

m

)
−Hn

(
τ ′Vnτ

′′
Vm\VnωV c

m

)
= Hm

(
ηVnτVm\V ′′n ωV c

m

)
−Hn

(
ηVnτVm\V ′′n ωV c

m

)
,
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which gives∑
τ ′Vn

e−Hm(τ ′Vnτ
′′
Vm\Vn

ωV c
m) = Zn

(
τ ′′Vm\VnωV c

m

)
eHm(ηVnτ ′′Vm\Vn

ωc)e−Hn(ηVnτ ′′Vm\VnωV c
m).

Inserting this in the above expression, and renaming ηVnτ ′′Vm\Vn ≡ η′Vm , we get

ζmζn(A | ω) =
∑
η′Vm

1A
(
η′VmωV c

m

) e−Hm(η′VmωVmc)

Zm
(
ωV c

m

) = ζm(A | ω).

3 Gibbs measures for models with uncountable set
of spin values

For each m ≥ 0 let πm : Ω → [0, 1]m+1 be given by πm (σ0, σ1, σ2, ...) = (σ0, . . . , σm)
and let Cm = π−1

m (P ([0, 1]m+1)), where σi := σ(xi) and P ([0, 1]m+1) is the family of
all subsets of [0, 1]m+1 (Cartesian product of [0, 1]). Then Cm is a field and each of
the sets in Cm is open and closed set in the metric space (Ω, ρ); also Cm ⊂ Cm+1. Let
C =

⋃
m≥0 Cm; then C is a field (the field of cylinder sets) and each of the sets in C

is both open and closed. Denote S(C) - the smallest sigma field containing C. Every
element of S(C) is called “measurable cylinder".

Let us consider a formal Hamiltonian:

H(σ) = −J
∑
〈x,y〉∈L

ξσ(x),σ(y), σ ∈ ΩV (4)

where J ∈ R \ {0} and ξ : (u, v) ∈ [0, 1]2 → ξuv ∈ R is a given bounded, measurable
function. As usual, 〈x, y〉 stands for the nearest neighbor vertices.

Let h : x ∈ V 7→ hx = (ht,x, t ∈ [0, 1]) ∈ R[0,1] be mapping of x ∈ V \ {x0}. Given
n = 1, 2, . . ., consider the probability distribution µ(n) on ΩVn defined by

µ(n)(σn) = Z−1
n exp

(
−βH(σn) +

∑
x∈Wn

hσn(x),x

)
, (5)

Here, as before, σn : x ∈ Vn 7→ σ(x) and Zn is the corresponding partition function:

Zn =

∫
ΩVn

exp

(
−βH(σ̃n) +

∑
x∈Wn

hσ̃n(x),x

)
λVn(dσ̃n). (6)

Let Λ ∈ N and ∆ ⊂ Λ. If µΛ is a measure on BΛ, the projection of µΛ on B∆ is
measure π∆ (µΛ) on B∆ defined by

[π∆ (µΛ)] (B) = µΛ {σ ∈ ΩΛ : σ|∆ ∈ B} , B ∈ B∆.
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Similarly, if µ is a measure on B, the projection of µ on BΛ is defined by

[πΛ(µ)] (B) = µ {σ ∈ Ω : σΛ ∈ B} = µ(σ̄|Λ = σΛ : σΛ ∈ B), B ∈ BΛ.

The following theorem is known:

Theorem 3. [1](Kolmogorov Extension Theorem) For each t in the arbitrary
index set T , let Ωt be a complete, separable metric space, with Ft the class of Borel
sets (the σ-field generated by the open sets).

Assume that for each finite nonempty subset v of T , we are given a probability
measure Pv on Fv. Assume the Pv are consistent, that is, πu (Pv) = Pu for each
nonempty u ⊂ v.

Then there is a unique probability measure P on F =
∏

t∈T Ft such that πv(P ) =
Pv for all v.

The probability distributions µ(n) are compatible if for any n ≥ 1 and σn−1 ∈
ΩVn−1 :

πVn−1

(
µ(n)

)
= µ(n−1) (7)

Then by Kolmogorov extension theorem, there exists a unique measure µ on ΩV such

that, for any n and σn ∈ ΩVn , µ
({

σ
∣∣∣
Vn

= σn

})
= µ(n)(σn).

The measure µ is called splitting Gibbs measure corresponding to Hamiltonian (4)
and function x 7→ hx, x 6= x0.

Proposition 2. [22] The probability distributions µ(n)(σn), n = 1, 2, . . ., in (5) are
compatible iff for any x ∈ V \ {x0} the following equation holds:

f(t, x) =
∏

y∈S(x)

∫ 1

0
exp(Jβξtu)f(u, y)du∫ 1

0
exp(Jβξ0u)f(u, y)du

. (8)

Here, and below f(t, x) = exp(ht,x − h0,x), t ∈ [0, 1] and du = λ(du) is the Lebesgue
measure.

Note, that the analysis of solutions to (8) is not easy. It’s difficult to give a full
description for the given potential function ξt,u.

Let ξtu is a continuous function. We put

C+[0, 1] = {f ∈ C[0, 1] : f(x) ≥ 0}, C+
0 [0, 1] = C+[0, 1] \ {θ ≡ 0}.

Define the operator Rk : C+
0 [0, 1]→ C+

0 [0, 1] by

(Rkf)(t) =

(∫ 1

0
K(t, u)f(u)du∫ 1

0
K(0, u)f(u)du

)k

, k ∈ N,

where K(t, u) = exp(Jβξtu), f(t) > 0, t, u ∈ [0, 1].
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We’ll study the equation (8) in the class of translational-invariant functions f(t, x),
i.e f(t, x) = f(t) ∈ C[0, 1] for any x ∈ V and it can be written as

(Rkf)(t) = f(t), (9)

Note that equation (9) is not linear for any k ≥ 1. For every k ∈ N we consider
an integral operator Hk acting in the cone C+[0, 1] i.e.,

(Hkf)(t) =

∫ 1

0

K(t, u)fk(u)du, k ∈ N. (10)

The operator Hk is called Hammerstein’s integral operator of order k. Clearly, if
k ≥ 2 then Hk is a nonlinear operator.

Lemma 1. [9] Let k ≥ 2. The equation

Rkf = f, f ∈ C+
0 [0, 1] (11)

has a nontrivial positive solution iff the Hammerstein’s operator has a positive eigen-
value, i.e. the Hammerstein’s equation

Hkf = λf, f ∈ C+[0, 1] (12)

has a nonzero positive solution for some λ > 0.

It is easy to check that if the number λ0 > 0 is an eigenvalue of the operator Hk,
then an arbitrary positive number is an eigenvalue of the operator Hk (see Theorem
3.7 [9]), where k ≥ 2. Consequently, we obtain

Let f(t, x) does not depend on the vertices of the Cayley tree. Then the last
equation (8) has a strongly positive solution if and only if the Hammerstein equation
has a strongly positive solution inM0 = {f ∈ C+[0, 1] : f(0) = 1}, where C+[0, 1] is
the set of all positive continuous functions on [0, 1] (see [9]).

Let f
(

1
3

)
= g

(
2
3

)
= c and denote that

ϕ1(t) =


f(t) if t ∈

[
0, 1

3

]
c if t ∈

[
1
3
, 2

3

]
g(t) if t ∈

[
2
3
, 1
] and ϕ2(t) =


g(1− t) if t ∈

[
0, 1

3

]
c if t ∈

[
1
3
, 2

3

]
f(1− t) if t ∈

[
2
3
, 1
] .

Also, for f1

(
1
3

)
= g1

(
2
3

)
= c1, we define functions:

ψ1(u) =


f1(u) if u ∈

[
0, 1

3

]
c1 if u ∈

[
1
3
, 2

3

]
g1(u) if u ∈

[
2
3
, 1
] and ψ2(u) =


g1(1− u), if u ∈

[
0, 1

3

]
c1, if u ∈

[
1
3
, 2

3

]
f1(1− u), if u ∈

[
2
3
, 1
] .

By using these functions we define a degenerate kernel:

K̃(t, u) = ϕ1(t)ψ1(u) + ϕ2(t)ψ2(u). (13)
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Then the equation (10) can be written as

f(t) =

1∫
0

(ϕ1(t)ψ1(u) + ϕ2(t)ψ2(u))fk(u)du. (14)

Namely,

f(t) = ϕ1(t)

1∫
0

ψ1(u)fk(u)d(u) + ϕ2(t)

1∫
0

ψ2(u)fk(u)d(u) = f(t).

Put

C1 =

1∫
0

ψ1(u)fk(u)d(u), C2 =

1∫
0

ψ2(u)fk(u)du.

Consequently, by taking into account f(t) = C1ϕ1(t) + C2ϕ2(t) we obtain

Ci =

1∫
0

ψi(u)(C1ϕ1(u) + C2ϕ2(u))kdu, i ∈ {1, 2}.

The last equality is equivalent to


C1 =

(
k
0

)
Ck

1α1 +

(
k
1

)
Ck−1

1 C2α2 + .... +

(
k
k

)
Ck

2αk+1

C2 =

(
k
0

)
Ck

2α1 +

(
k
1

)
Ck−1

2 C1α2 + .... +

(
k
k

)
Ck

1αk+1.

(15)

Here and below,

α1 =

1∫
0

ψ1(u)ϕk1(u)du, α2 =

1∫
0

ψ1(u)ϕk−1
1 (u)ϕ2(u)du, ... αk+1 =

1∫
0

ψ1(u)ϕk+1
2 (u)du,

β1 =

1∫
0

ψ2(u)ϕk1(u)du, β2 =

1∫
0

ψ2(u)ϕk−1
1 (u)ϕ2(u)du, ... βk+1 =

1∫
0

ψ2(u)ϕk+1
2 (u)du.

(16)
Let x = C1

C2
then the system of equations (15) can be written as

x =

(
k
0

)
α1x

k +

(
k
1

)
α2x

k−1 +

(
k
2

)
α3x

k−2 + ... +

(
k

k − 1

)
αkx+

(
k
k

)
αk+1(

k
0

)
αk+1xk +

(
k
1

)
αkxk−1 +

(
k
2

)
αk−1xk−2 + ... +

(
k

k − 1

)
α2x+

(
k
k

)
α1

.
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Namely,

Qk(x) :=

(
k
0

)
αk+1x

k+1+

((
k
1

)
αk −

(
k
0

)
α1

)
xk+ ...

...+

((
k
k

)
α1 −

(
k

k − 1

)
αk

)
x−

(
k
k

)
αk+1. (17)

Now, we can conclude the following result:

Proposition 3. Finding positive solutions of the equation (10) with the kernel (13)
is equivalent to finding positive roots of the polynomial Qk(x).

Now, we study positive solutions to the equation (10) with the kernel (13) for the
case k = 2. Let k = 2 then the system of equations (15) can be rewritten as{

C1 = C2
1α1 + 2C1C2α2 + C2

2α3

C2 = C2
1β1 + 2C1C2β2 + C2

2β3.
(18)

By (16) and construction of kernel one gets:

α1 =

1∫
0

ψ1(u)ϕ2
1(u)d(u) =

1
3∫

0

f1(u)f 2(u)d(u) +

2
3∫

1
3

c1c
2d(u) +

1∫
2
3

g1(u)g2(u)du =

=

1
3∫

0

g1(1− u)g2(1− u)d(u) +

2
3∫

1
3

c1c
2d(u)+

+

1∫
2
3

f1(1− u)f 2(1− u)du =

1∫
0

ψ2(u)ϕ2
2(u)d(u) = β3.

Similarly,

α2 =

1∫
0

ψ1(u)ϕ1(u)ϕ2(u)d(u) =

1
3∫

0

f1(u)f(u)g(1− u)d(u) +

2
3∫

1
3

c1c
2d(u)+

+

1∫
2
3

g1(u)g(u)f(1− u)du =

1
3∫

0

g1(1− u)f(u)g(1− u)d(u) +

2
3∫

1
3

c1c
2d(u)+

+

1∫
2
3

f1(1− u)g(u)f(1− u)d(u) =

1∫
0

ψ2(u)ϕ1(u)ϕ2(u)d(u) = β2
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and

α3 =

1∫
0

ψ1(u)ϕ2
2(u)d(u) =

1
3∫

0

f1(u)g2(1− u)d(u) +

2
3∫

1
3

c1c
2d(u)+

+

1∫
2
3

g1(u)f 2(1− u)d(u) =

1
3∫

0

g1(1− u)f 2(u)d(u) +

2
3∫

1
3

c1c
2d(u)+

+

1∫
2
3

f1(1− u)g2(u)d(u) =

1∫
0

ψ2(u)ϕ2
1(u)d(u) = β1.

Hence
α1 = β3, α2 = β2, α3 = β1. (19)

By taking into account x = C1

C2
and the equality (17) we have

Q2(x) = α3x
3 + (2α2 − α1)x2 + (α1 − 2α2)x− α3 = 0.

Thus, we obtain

Q2(x) = (x− 1)(a3x
2 + (a3 + 2a2 − a1)x+ a3) = 0.

Put
D := (2a2 − a1 − a3)(2a2 − a1 + 3a3).

It is easy to check a1 + a3 ≥ 2a2. Therefore, the sign of D is the same as the sign of
the expression a1 − 2a2 − 3a3.

Proposition 4. Let k = 2 and K̃(t, u) be the kernel which defined in (13). Then the
following statements hold:

1. If a1 < 2a2 + 3a3 then there is a unique positive solution of (14);

2. If a1 = 2a2 + 3a3 then there are exactly two positive solutions of (14);

3. If a1 > 2a2 + 3a3 then there are exactly three positive solutions of (14).

In the language of Gibbs measure theory we obtain:

Theorem 4. Let k = 2 and K̃(t, u) be the function of the Hamiltonian (4). Then
the following assignments hold:

1. If a1 < 2a2 + 3a3 then there is a unique translation-invariant Gibbs measure of
the model (4);

2. If a1 = 2a2+3a3 then there are exactly two translation-invariant Gibbs measures
of the model (4);

3. If a1 > 2a2 + 3a3 then there are exactly three translation-invariant Gibbs mea-
sures of the model (4).
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