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Abstract
In this paper, we define a new capacity ∆m on the class of shm functions,

which is defined by Laplace operator. We prove that ∆m-capacity satisfies
Choquet’s axioms of measurability. Moreover, we compare our capacity with
Sadullaev-Abdullaev capacities. In particular, it implies that ∆m-capacity of a
set E is zero if and only if E is a m-polar set.
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1 Introduction
Capacity is a set function arising in (pluri)potential theory as the analogue of the
physical concept of the electrostatic capacity. In this paper, we study capacities in Cn.
Capacities actively studied by many authors Sadullaev (see [1-4]), Bedford and Taylor
(see [6]), Abdullaev (see [1]), Rakhimov (see [4,8,9]) and other mathematicians. There
are several capacities in the class of subharmonic and plurisubharmonic functions in
Cn: capacity of condenser, P -capacity, ∆-capacity (see [1-8]). Moreover, similar
capacities is defined in the class of strongly m−subharmonic (shm) functions and
actively studied by Sadullaev and Abdullaev (see [1]). In this work, we will define
a new capacity on the class of shm functions defined by Laplace operator ∆u =
ddcu ∧ βn−1, where β = ddc|z|2. Since it is a linear operator this operator is more
practical in use.

Our paper is organized as follows: in Section 2 we recall some notions and theo-
rems, and moreover, we define a new capacity and prove some of its properties. In
Section 3 we give definitions and some properties of Cn-capacities defined by Sadul-
laev and Abdullaev. Finally, in Section 4 we compare our capacity with Sadullaev-
Abdullaev capacities.

2 ∆m-capacity and its properties
Firstly, let us recall some definitions and results from [1]. Let D be a domain in Cn.
For a real function u ∈ C2(D) the second order differential

ddcu =
i

2

∑
j,k

ujkdzj ∧ dzk
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(at a fixed point z0 ∈ D) is a Hermitian quadratic form, where ujk = ∂2u
∂zj∂z̄k

. After
approaching a general unitary transformation of coordinates, it is reduced to the
following diagonal form

ddcu =
i

2

[
λ1dz1 ∧ dz1 + ...+ λndzn ∧ dzn

]
where λ1(u), ..., λn(u) are the eigenvalues of the Hermitian matrix (uj,k), which are
real, i.e. (λ1(u), ..., λn(u)) ∈ Rn. It’s not hard to see that

(ddcu)k ∧ βn−k = k!(n− k)!Hm(u)βn, ∀k = 1, 2, ..., n,

where Hk(u) =
∑

1<j1<...<jk≤n λj1 ...λjk is Hessian of dimention k of vector λ = λ(u) ∈
Rn and β = ddc‖z‖2.

Definition 1. (see [1]) Twice smooth function u(z) ∈ C2(D) is called strongly m-
subharmonic at the point z0 ∈ D, if:

(ddcu)k ∧ βn−k ≥ 0, ∀k = 1, 2, ..., n−m+ 1.

Now let us define strongly m-subharmonic functions in a larger class

Definition 2. (see [1]) A function u ∈ L1
loc(D), is called strongly m-subharmonic

(shm) in D ⊂ Cn, if it is upper semicontinuous and for any twice smooth strongly
m-subharmonic functions v1, ..., vm−1 the current ddcu∧ ddcv1 ∧ ...∧ ddcvm−1 ∧ βn−m
is positive, where the current is defined as[
ddcu ∧ ddcv1 ∧ ... ∧ ddcvm−1 ∧ βn−m

]
(ω) =

∫
uddcv1 ∧ ... ∧ ddcvm−1β

n−m ∧ ddcω

for any smooth function ω with compact support in D.

The class of strongly m-subharmonic (shm) functions on D denoted by shm(D).
Let us remind that it is called strongly shm in the domainD, if ρ(z) is strongly shm

at every point z0 ∈ D. Domain D ⊂ Cn is called strongly m-convex, if there exists
a strongly shm function ρ(z) in a neighbourhood G of D, such that D = {ρ < 0}.
Let us recall the notion of m-polarity, which plays the role of null measure sets for
m-capacities.

Definition 3. The set E ⊂ D ⊂ Cn is called m-polar in D, if there is a function
u(z) ∈ shm(D), u(z) 6≡ −∞ such that u|E = −∞.

∆m-capacity. For simplicity, we work on a strongly m−convex domain D ⊂ Cn.
For a compact K ⊂⊂ D define a class of functions

Um(K,D) =

{
u(z) ∈ shm(D) ∩ C(D) : u|K ≤ −1, u|D ≤ 0, lim

z→∂D
u(z) ≥ 0

}
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and set the following quantity

∆m(K,D) := inf

{∫
D

∆u : u ∈ Um(K,D)

}
.

The quantity ∆m(K,D) is called ∆m-capacity of K with respect to D.
From now on, we write ∆m(K) instead of ∆m(K,D) when the role of D is not

important. The capacity ∆m(K) has the following properties:

1◦. ∆m(K) is monotone, i.e. for K1 ⊂ K2 we have ∆m(K1) ≤ ∆m(K2).
Proof. Thanks to K1 ⊂ K2, any function u, with u|K2 ≤ −1, is clearly less −1

on K1. Hence, we have Um(K1, D) ⊃ Um(K2, D). Consequently, by definition we can
easily see that ∆m(K1) ≤ ∆m(K2).

2◦. ∆m(K) is sub-additive, i.e. ∆m(K1 ∪K2) ≤ ∆m(K1) + ∆m(K2).
Proof. Clearly, if u1 ∈ Um(K1, D) and u2 ∈ Um(K2, D) then u1 + u2 ∈ Um(K,D),

where K = K1 ∪K2. Therefore

∆m(K) = inf

{∫
D

∆u : u ∈ Um(K,D)

}
≤

≤ inf

{∫
D

∆(u1 + u2) : u1 ∈ Um(K1, D), u2 ∈ Um(K2, D)

}
=

= inf

{∫
D

∆u1 +

∫
D

∆u2 : u1(z) ∈ Um(K1, D), u2(z) ∈ Um(K2, D)

}
=

= inf

{∫
D

∆u1 : u1 ∈ Um(K1, D)

}
+

+ inf

{∫
D

∆u2 : u2 ∈ Um(K2, D)

}
= ∆m(K1) + ∆m(K2).

The proof of the property is complete.

3◦. ∆m(K) is monotonic by m, i.e., ∆1(K) ≤ ∆2(K) ≤ . . . ≤ ∆n(K).
Proof. Since sh(D) = sh1(D) ⊃ sh2(D) ⊃ ... ⊃ shn(D) = psh(D) we have

U1(K,D) ⊃ U2(K,D) ⊃ . . . ⊃ Un(K,D). Hence, we deduce that

∆1(K,D) ≤ ∆2(K,D) ≤ . . . ≤ ∆n(K,D).

Let us now define the external capacity in a standard way.
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Definition 4. Let E be a subset of D. The external capacity of E is

∆∗m(E) = inf

{
∆m(U) : U ⊃ E − open set

}
,

where capacity of open set U ⊂ D is defined by

∆m(U) = sup

{
∆m(K) : K ⊂⊂ U

}
.

Now we collect the following properties of the external capacity.

4◦. For any compact K ⊂⊂ D, the external capacity of K is equal to ∆m-capacity
of K, i.e., ∆∗m(K) = ∆m(K).

Proof. For any ε > 0 there exists an open set U ⊃ K, such that

∆∗m(K) ≥ ∆m(U)− ε ≥ ∆m(K)− ε.

Letting ε→ 0 we obtain
∆∗m(K) ≥ ∆m(K). (1)

On the other hand, by definition of external capacity, we have

∆∗m(K) ≤ ∆m(U)

for all U ⊃ K. For any ε > 0 there exists u ∈ Um(K,D) such that
∫
D

∆u ≤
∆m(K) + ε. Take an open set K ⊂ U b {(1 + ε)u < −1}. Since (1 + ε)u ∈ Um(U,D)
we have

∆m(U) ≤ ∆m(U) ≤ (1 + ε)

∫
D

∆u ≤ (1 + ε)(∆m(K) + ε).

So, we have

∆∗m(K) ≤ ∆m(U) ≤ (1 + ε)(∆m(K) + ε).

By letting ε→ 0 we have
∆∗m(K) ≤ ∆m(K). (2)

Thanks to (1) and (2) we have ∆∗m(K) = ∆m(K) for any compact set K ⊂⊂ D. The
proof is complete.

5◦. External capacity ∆∗m(E) is monotonic, e.i.,

E1 ⊂ E2 ⇒ ∆∗m(E1) ≤ ∆∗m(E2).

Proof. Since E1 ⊂ E2 we have that

∆∗m(E2) = inf

{
∆m(U) : U ⊃ E2

}
≥ inf

{
∆m(U) : U ⊃ E1

}
= ∆∗m(E1).
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6◦. ∆∗m(E) is countable-subadditive, e.i. ∆∗m

(⋃
j

Ej

)
≤
∑
j

∆∗m(Ej).

Proof. From the definition, for any ε > 0 there are open subsets Uj ⊃ Ej such
that ∆m(Uj)−∆∗m(Ej) <

ε
2j
, j = 1, 2, .... Then

∆∗m

(
∞⋃
j=1

Ej

)
≤ ∆m

(
∞⋃
j=1

Uj

)
≤

∞∑
j=1

∆m(Uj) ≤ ∆∗m(Ej) + ε.

By letting ε→ 0, we get

∆∗m

(⋃
j

Ej

)
≤
∑
j

∆∗m(Ej).

7◦. For any increasing sequence of sets Ej ⊂ Ej+1 the following equality holds

∆∗m

(⋃
j

Ej

)
= lim

j→∞
∆∗m(Ej).

Proof. Since Ej is an increasing sequence of sets, from the previous property,
∆∗m(Ej) is also an increasing sequence and it has a limit as n → ∞. Again, by the
monotonicity of ∆∗m, we have

∆∗m

(⋃
j

Ej

)
≥ ∆∗m(Ek)

for all k = 1, 2, . . . . Hence

∆∗m

(⋃
j

Ej

)
≥ lim

k→∞
∆∗m(Ek).

Now let Ej ⊂ Ej+1 be arbitrary sets j = 1, 2.... Let us fix arbitrary number
ε > 0. Then for every j ∈ N there exists open set Uj, with Uj ⊂ Uj+1 and such that
∆(Uj)−∆∗(Ej) <

∑j
l=1

ε
2l
. Hence, for any k

∆m

(
k⋃
j=1

Uj

)
≤ ∆∗m

(
k⋃
j=1

Ej

)
+

k∑
j=1

ε

2j
.

From here, by letting k go to infinity, we obtain

∆∗m

(
∞⋃
j=1

Ej

)
≤ ∆m

(⋃
j

Uj

)
≤ lim

j→∞
∆∗(Ej) + ε

regardless of whether capacity ∆∗m(E) finite or not. Since ε is arbitrary, the proof is
complete.

The properties above guarantee that ∆∗m-capacity is a Choquet capacity (see [7],
page 64).
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3 Other capacities in the class of shm functions

As above we fix 1 ≤ m ≤ n and a strongly m-convex domain D ⊂ Cn. Let E be a
subset of the domain D.

Definition 5 (see [1]). Consider the class of functions

U(E,D) =
{
u(z) ∈ shm(D) : u|D ≤ 0, u|E ≤ −1

}
and put

ω(z, E,D) = sup
{
u(z) : u ∈ U(E,D)

}
.

Then the regularization ω∗ (z, E, D) = lim
w→z

ω (w, E, D) = lim
ε→0

sup
w∈B(z,ε)

ω (w, E, D)

is called the m−subharmonic measure (Pm-measure) of E with respect to D, where
B (a, ρ) is a ball centred at a and radius ρ > 0.

Let us now define a capacity defined by Sadullaev and Abdullaev.

Definition 6 (see [1]). Let E ⊂ D and ω∗(z, E,D) be its Pm-measure. Then the
integral

Pm(E,D) = −
∫
D

ω∗(z, E,D)dV

is called the Pm-capacity of the set E with respect to D.

The capacity Pm(E,D) is well studied. In particular, it is zero if and only if E is
m-polar set. It is monotonic, countably subadditive and satisfies Choquet’s axioms
of measurability (see [1]).

The more natural concept is condenser capacity, which is defined using the Hessian
as total mass of the measure

(
ddcω∗(z,K,D)

)m ∧ βn−m.
Definition 7 (see [1]). Let K compact in D ⊂ Cn. The following quantity

Cm(K,D) = inf

{∫
D

(ddcu)m∧βn−m : u ∈ shm(D) ∩ C(D), u|K ≤ −1, lim
z→δD

u(z) ≥ 0

}

is called the condenser capacity (m-capacity) of (K,D).

Note that, for E ⊂ D the external capacity C∗m(E,D) defined in a standard way.
The capacity C∗m(E,D) is well studied and has all the properties of capacities (see
[2]). In particular it is zero if and only if E is a m-polar set.
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4 Main result
In this section we will compare ∆∗m−capacity with other two capacities whose defined
in the previous section.

Theorem 1. The following statements are true:

(i) Let E ⊂ B(0, r) ⊂⊂ B(0, R), r < R. Then

∆∗m(E,B(0, r)) ≤ 1

(1 + a(r))(R2 − r2)
Pm(E,B(0, R)),

where a(r) = sup
B(0,r)

ω∗(z, E,B(0, R)) > −1.

(ii) Let E ⊂ D , then there exists a constant M(D) > 0 (depending on measure of
D) such that

m
√
C∗m(E,D) ≤M(D) ·∆∗m(E,D).

Proof. First of all, we will prove the first inequality (i). We can assume that E is a
regular compact. Let ρ(z) = |z|2−R2 and ω∗ := ω∗(z, E,B(0, R)) = ω(z, E,B(0, R).
For the following inequality, we use the similar steps as in [8]

0∫
−R2

dt

∫
ρ(z)≤t

(ddcρ)n−1 ∧ ddcω∗ =

∫
|z|=R

ω∗dc|z|2 ∧ (ddc|z|2)n−1 =

= −
∫
|z|≤R

ω∗(ddc|z|2)n = Pm(E,B(0, R)).

On the other hand, we can estimate the LHS of this inequality from below:

0∫
−R2

dt

∫
ρ(z)≤t

ddcω∗ ∧ (ddcρ)n−1 ≥
0∫

r2−R2

dt

∫
ρ(z)≤r2

ddcω∗ ∧ (ddcρ)n−1 =

=
(
R2 − r2

) ∫
ρ(z)≤r2

ddcω∗ ∧ (ddcρ)n−1 =

=
(
R2 − r2

) ∫
ρ(z)≤r

∆ω∗ ≥

≥
(
R2 − r2

)(
1 + a(r)

)
∆∗m(E,B(0, r)).

The last inequality follows due to regularity of E and ω∗(z,E,B(0,R))−a(r)
1+a(r)

∈ Um(E,B(0, r)).
So the assertion (i) is proved.

162



Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

Now, we will prove the assertion (ii). We shall need the following claim.
Claim. Let n,m be the natural numbers with 1 ≤ m ≤ n. Suppose that,

λ1, λ2, ..., λn are real numbers and∑
1≤i1<...<ik≤n

λi1λi2 · · ·λik ≥ 0

for all k = 1, 2, ...,m. Then

Ck =

(
λ1 + λ2 + . . .+ λn

n

)m

≥ 1(
n

m

) ∑
1≤i1<···<im≤n

λi1λi2 · · ·λim .

Proof of the Claim. We take a polynomial with roots λ1, λ2, . . . , λn:

P (x) =
n∏
k=1

(
x− λk

)
= xn + . . .+ a1x

1 + a0,

where an−j = (−1)jCj. Observe that since P (x) has n real roots P ′(x) has n− 1 real
roots counting with multiplicities. Note that Cj ≥ 0. Hence, (n−m)’th derivative

P (n−m)(x) = bmx
m + . . .+ b1x

1 + b0

has m non-negative roots, since bj = (−1)m−j(j + 1)(j + 2)...(j + n − m)Cm−j for
0 ≤ j ≤ m− 1 and bm = (m− 1)(m+ 1) · . . . · n. Denote the m non-negative roots of
P (n−m)(x) by x1, . . . , xm, counted with multiplicity. By Cauchy’s inequality we have

∣∣∣ bm−1

bm

∣∣∣
m

m

=

(
x1 + . . .+ xm

m

)m
≥ x1x2 . . . xm =

∣∣∣∣ b0

bm

∣∣∣∣ .
We can easily see that the last inequality is equivalent to(an−1

n

)m
≥ 1(

n

m

) |an−m|
and it implies(

λ1 + λ2 + . . .+ λn
n

)m

≥ 1(
n

m

) ∑
1≤i1<...<im≤n

λi1λi2 . . . λim .

Proof of the Claim is complete.
Let us now complete our proof. By using the Claim, we obtain that

1

n

∣∣∆u∣∣ ≥ 1(
n

m

) 1
m

∣∣(ddcu)m ∧ βn−m
∣∣ 1
m
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for any u ∈ shm(D) ∩ C2(D). It gives us

1(
n

m

) 1
m

∫
D

∣∣(ddcu)m ∧ βn−m
∣∣ 1
m ≤ 1

n

∫
D

∆u

and thanks to Favard’s inequality (see [10]) there exists a constant C > 0 (depending
on measure of D) such that

C

∫
D

∣∣(ddcu)m ∧ βn−m
∣∣ 1
m ≥ m

√√√√∫
D

(ddcu)m ∧ βn−m.

Thus, there exists a constant C > 0 such that

1(
n

m

) 1
m

m

√√√√∫
D

(ddcu)m ∧ βn−m ≤ C

n

∫
D

∆u. (3)

By the smooth approximation uj ↓ u and the convergence of currents (see [1])
(ddcuj)

m ∧ βn−m 7→ (ddcu)m ∧ βn−m and ∆uj 7→ ∆u, we obtain (3) for any m-
subharmonic function. It completes the proof.

From Theorem 1 we have the following corollary.

Corollary 1. ∆m-capacity of E is zero if and only if E is a m-polar set.

Remark 1. Actually, we can obtain a similar result if we define ∆k
m-capacity by using

(ddcu)k ∧ βn−k, with 1 ≤ k ≤ m, instead of ddcu∧ βn−1. All the above properties can
be proven by similar technique for ∆k

m-capacity. However, in this paper, our focus
is exclusively on the Laplace operator, which is linear and, therefore, deemed more
important.
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