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Abstract

In three-dimensional domain a problem of identification of recourses for
Benney–Luke type partial differential equation of the even order with integral
form conditions, spectral parameter and small positive parameters in mixed
derivatives is considered. The solution of this partial differential equation is
studied in the class of regular functions. The Fourier series method is used. Us-
ing this Fourier method, is obtained a countable system of ordinary differential
equations. So, the nonlocal boundary value problem is integrated as an ordi-
nary differential equation. When we define the arbitrary integration constants
there are possible five cases with respect to the spectral parameter. By the
aid of given additional condition, we obtained the presentations with respect
to redefinition functions. Using the Cauchy–Schwarz inequality and the Bessel
inequality, we proved the absolute and uniform convergence of the obtained
Fourier series.

Keywords: identification of sources, Benney-Luke type differential equa-
tion, Fourier method, absolute and convergence, regular solvability.
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Introduction
The theory of direct boundary and inverse boundary value problems is currently one
of the most important sections of the theory of differential equations. Studies of
many problems of gas dynamics, theory of elasticity, theory of plates and shells are
described by high-order partial differential equations. Partial differential equations
of Boussinesq type and Benney-Luke type have differential applications in different
branch of sciences (see, for example, [5, 6, 17]). Therefore, a large number of works
are devoted to the study of inverse problems for differential and integro-differential
equations (see, for example, [2, 7, 11, 13, 14, 15, 16, 18, 23, 24]). In cases where the
boundary of the flow domain of a physical process is unavailable for measurements,
nonlocal conditions in integral form can serve as additional information sufficient for
unique solvability of the problem [8]. Therefore, in recent years, research on the study
of direct and inverse nonlocal boundary value problems for differential and integro-
differential equations with integral conditions has been intensified (see, for example,
[1, 3, 4, 9, 10, 12, 19, 20, 21, 22], [23]-[30]).

In this paper, we study the regular solvability of a nonlocal inverse boundary
value problem for a Benney-Luke type differential equation with spectral parameter
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and small positive parameters. In studying one-valued solvability and constructing
solutions, the presence of spectral parameter plays an important role.

In three-dimensional domain Ω = {(t , x , y) | 0 < t < T , 0 < x , y < l } a partial
differential equation of the following form is considered

D [U ] = α (t) β (x, y) (1)

with nonlocal conditions on the integral form

U (T, x, y) +

∫ T

0

U (t, x, y) d t = ϕ1(x, y) , 0 ≤ x , y ≤ l , (2)

Ut (T, x, y) +

∫ T

0

Ut (t, x, y) t d t = ϕ2 (x, y) , 0 ≤ x, y ≤ l, (3)

where T and l are given positive real numbers,

D [U ] =

[
∂ 2

∂ t 2
− ∂ 2

∂ t 2

(
ε1

∂ 2k

∂ x 2k
− ε2

∂ 4k

∂ x 4k
+ ε1

∂ 2k

∂ y 2k
− ε2

∂ 4k

∂ y 4k

)
−

−ω 2

(
∂ 2k

∂ x 2k
− ∂ 4k

∂ x 4k
+

∂ 2k

∂ y 2k
− ∂ 4k

∂ y 4k

)]
U (t, x, y),

ω is positive spectral parameter, ε1, ε2 are positive small parameters, k is given
positive integer, α (t ) ∈ C (ΩT ), ΩT ≡ [0 ; T ] , Ω l ≡ [0 ; l] , β (x, y) ∈ C (Ω 2

l ) is
known function, ϕi(x, y) (i = 1, 2) are redefinition functions, Ω 2

l ≡ Ωl × Ωl, Ω l ≡
[0 ; l] . We assume that for given functions are true the following boundary conditions

ϕi(0, y) = ϕi(l, y) = ϕi(x, 0) = ϕi (x, l) = 0, i = 1, 2,

β (0, y) = β (l, y) = β (x, 0) = β (x, l) = 0.

Problem Statement. We find the triple of functions
{U (t, x, y); ϕ1 (x, y), ϕ2 (x, y)}, first of which satisfies differential equation
(1), nonlocal integral conditions (2) and (3), zero boundary value conditions for
0 ≤ t ≤ T

U (t, 0, y) = U (t, l, y) = U (t, x, 0) = U (t, x, l) =

=
∂ 2

∂ x2
U (t, 0, y) =

∂ 2

∂ x2
U (t, l, y) =

∂ 2

∂ x2
U (t, x, 0) =

∂ 2

∂ x2
U (t, x, l) =

=
∂ 2

∂y2
U (t, 0, y) =

∂ 2

∂y2
U (t, l, y) =

∂ 2

∂y2
U (t, x, 0) =

∂ 2

∂y2
U (t, x, l) = . . . =

=
∂ 4k−2

∂x 4k−2
U (t, 0, y) =

∂ 4k−2

∂x 4k−2
U (t, l, y) =

∂ 4k−2

∂x 4k−2
U (t, x, 0) =

∂ 4k−2

∂x 4k−2
U (t, x, l) =

=
∂ 4k−2

∂y 4k−2
U(t, 0, y) =

∂ 4k−2

∂y 4k−2
U(t, l, y) =

∂ 4k−2

∂y 4k−2
U(t, x, 0) =

∂ 4k−2

∂y 4k−2
U(t, x, l) = 0 ,

(4)
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class of functions

U (t, x, y) ∈ C (Ω) ∩ C 2, 4k, 4k
t, x, y (Ω) ∩ C 2+4k+0

t, x, y (Ω) ∩ C 2+0+4k
t, x, y (Ω) (5)

and additional conditions

U (ti, x, y) = ψi(x, y) , i = 1, 2, 0 < t1 < t2 < T, 0 ≤ x , y ≤ l , (6)

where ψi(x, y) are given smooth functions and

ψi(0, y) = ψi(l, y) = ψi(x, 0) = ψi(x, l) = 0,

C 2+4k+0
t, x, y (Ω) is the class of continuous functions ∂ 2+4k U (t, x, y)

∂ t 2∂ x 4k on Ω, while C 2+0+4k
t, x, y (Ω)

is the class of continuous functions ∂ 2+4k U (t, x, y)
∂ t 2∂ y 4k on Ω, Ω = {(t , x , y) | 0 ≤ t ≤

T , 0 ≤ x , y ≤ l }, ∂ 4k−2

∂y 4k−2U (t , x , l) we understand as ∂ 4k−2

∂y 4k−2U (t , x , y)
∣∣∣
y=l

.

1 Expansion of the solution of the problem in a
Fourier series for regular values of spectral param-
eter

Nontrivial solutions of the problem are sought as a Fourier series

U (t, x, y) =
∞∑

n,m=1

un ,m (t)ϑn ,m (x, y), (7)

where

un,m (t) =

∫ l

0

∫ l

0

U (t, x, y)ϑn,m (x, y) d x d y, (8)

ϑn,m (x, y) =
2

l
sin

π n

l
x sin

πm

l
y, n, m = 1 , 2 , . . .

We also suppose that the following functions are expand to Fourier series

β(x, y) =
∞∑

n,m=1

βn ,m ϑn ,m (x, y), (9)

where

βn,m =

∫ l

0

∫ l

0

β (x, y)ϑn,m (x, y) d x d y. (10)

Substituting Fourier series (7) and (9) into partial differential equation (1), we
obtain the countable system of ordinary differential equations of second order

u′′n ,m (t) + λ 2k
n ,m ω

2un ,m (t) =
α (t) βn ,m

1 + µ 2k
n ,m

(
ε1 + ε2µ 2k

n ,m

) , (11)
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where

λ 2k
n ,m =

µ 2k
n ,m

(
1 + µ 2k

n ,m

)
1 + µ 2k

n ,m

(
ε1 + ε2µ 2k

n ,m

) , µ kn,m =
(π
l

)k √
n 2k +m 2k .

The second order countable system of differential equations (11) is solved by the
variation method of arbitrary constants

un,m (t) = A 1n,m cos
(
λ kn,mω t

)
+ A 2n,m sin

(
λ kn,mω t

)
+ γn ,m (t), (12)

where γn ,m (t) = βn ,m

λ k
n ,m ω

hn ,m (t), A 1 , n ,m and A 2 , n ,m are arbitrary constants,

hn,m (t) =
1

1 + µ 2k
n,m

(
ε1 + ε2µ 2k

n,m

) ∫ t

0

sin
(
λ kn,mω (t− s)

)
α (s) d s.

Using Fourier coefficients (8), the integral conditions (2) and (3) are written in
the following form

un,m (T ) +

∫ T

0

un,m (t) d t =

=

∫ l

0

∫ l

0

(
U (T, x, y) +

∫ T

0

U (t, x, y) d t

)
ϑn,m (x, y) d x d y =

=

∫ l

0

∫ l

0

ϕ1(x , y)ϑn,m (x , y) d x d y = ϕ 1n,m , (13)

u′n,m (T ) +

∫ T

0

u′n ,m (t) t d t =

=

∫ l

0

∫ l

0

(
Ut (T, x, y) +

∫ T

0

Ut (t, x, y) t d t

)
ϑn,m (x, y) d x d y =

=

∫ l

0

∫ l

0

ϕ2 (x, y)ϑn,m (x, y) d x d y = ϕ 2n,m . (14)

To find the unknown coefficients A 1n,m and A 2n,m in (12), we use conditions
(13) and (14) and obtain the system{

A 1n,m σ 1n,m (ω) + A 2n,mσ 2n,m (ω) = ϕ 01n,m ,
A 1n,m σ 3n,m (ω) + A 2n,mσ 4n,m (ω) = ϕ 02n,m ,

(15)

where

σ 1n,m (ω) =
λ kn,mω cos

(
2λ kn,mω T

)
+ sin

(
2λ kn,mω T

)
λ kn,mω

σ 2n,m (ω) =
− cos

(
2λ kn,mω T

)
+ λ kn,mω sin

(
2λ kn,mω T

)
+ 1

λ kn,mω
,

σ 3n,m (ω) =
−λ kn,mω T cos

(
2λ kn,mω T

)
− λ kn,mω T +

[
1 +

(
λ kn,mω

) 2
]

sin
(
2λ kn,mω T

)
(
λ kn,mω

)2 ,
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σ 4n,m (ω) =

[
1 +

(
λ kn,mω

) 2
]

cos
(
2λ kn,mω T

)
+ λ kn,mω T sin

(
2λ kn,mω T

)
− 1(

λ kn,mω
)2 ,

ϕ 01n ,m = ϕ 1n ,m −
(
γn ,m (T ) +

∫ T

0

γn,m (t) d t

)
,

ϕ 02n,m = ϕ 2n ,m −
(
γ′n,m (T ) +

∫ T

0

γ′n ,m (t) t d t

)
.

The system (15) unique solvable, if the following determinant is nonzero

σ 5n,m (ω) = σ 1n,m (ω) · σ 4n,m (ω)− σ 2n,m (ω) · σ 3n,m (ω) 6= 0 .

To uniquely determine A 1n,m and A 2n,m from system (15), we calculate the
values of the spectral parameter ω presented in the coefficients σ i n,m (ω) , i = 1 , 4 .
The coefficients σ i n,m (ω) , i = 1 , 4 can go to zero for some values of the parameter
ω from the positive semi-axis (0 ; ∞) .

1. We assume that σ 1n,m (ω) = 0 . Then we obtain

λ kn,mω cos
(
2λ kn,mω T

)
+ sin

(
2λ kn,mω T

)
= 0.

Hence, we have a trigonometric equation tan
(
2λ kn,mω T

)
= −λ kn,mω with respect

to parameter ω. So, the condition σ 1n,m (ω) = 0 and a trigonometric equation
tan

(
2λ kn,mω T

)
= −λ kn,mω are equivalent.

2. Let σ 2n,m (ω) = 0 . Then we have a trigonometric equation

cos
(
2λ kn,mω T

)
− λ kn,mω sin

(
2λ kn,mω T

)
= 1 .

3. When σ 3n,m (ω) = 0, we come to the following trigonometric equation

−λ kn,mω T cos
(
2λ kn,mω T

)
+
[
1 +

(
λ kn,mω

) 2
]

sin
(
2λ kn,mω T

)
= λ kn,mω T .

4. If we put σ 4n,m (ω) = 0, then have a trigonometric equation[
1 +

(
λ kn,mω

) 2
]

cos
(
2λ kn,mω T

)
+ λ kn,mω T sin

(
2λ kn,mω T

)
− 1.

The set of all values of the spectral parameter ω, consisting of positive solutions
of trigonometric equations σ i n,m (ω) = 0, we denote by Λ i , respectively, i = 1 , 4 .
It easy to prove, that Λ i ∩ Λ j = ∅ , i , j = 1 , 4 , i 6= j. For example, we show
that Λ 1 ∩ Λ 2 = ∅. In this order we assume, that σ 1n,m (ω) = σ 2n,m (ω) = 0 . By
virtue of our assumption, we have σ 2

1n,m (ω) + σ 2
2n,m (ω) = 0 . Hence, we obtain a

trigonometric equation

1√
1 +

(
λ kn,mω

) 2
cos

(
2λ kn,mω T

)
−

λ kn,mω√
1 +

(
λ kn,mω

) 2
sin
(

2λ kn,mω T
)

=

(
λ kn,mω

) 2
+ 2

2
√

1 +
(
λ kn,mω

) 2
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and this equation should have a solution. As you know, this trigonometric equation is
solvable, if right-hand side of this equation lays in the interval [−1; 1]. But, we show that

(λ k
n,mω)

2
+2

2
√

1+(λ k
n,mω)

2
> 1 . Indeed, 2 + λ kn,mω

2 > 2
√

1 + λ kn,mω
2. Both sides of the inequality

are greater than one. Therefore, they can be squared both sides:(
2 + λ kn,mω

2
) 2

> 4
(

1 + λ kn,mω
2
)
⇒ 4 + 4λ kn,mω

2 +
(
λ kn,mω

2
) 2

> 4 + 4λ kn,mω
2

or
(
λ 2
n,mω

2
) 2

> 0. Hence, we obtain that (λ k
n,mω)

2
+2

2
√

1+(λ k
n,mω)

2
> 1 . So, this trigonometric

equation has no any solution. Therefore, our assumption σ 1n,m (ω) = σ 2n,m (ω) = 0is
not true. In other cases, this statement is proved similarly. Consequently, there are val-
ues of the parameter ω, for which σ 5n,m (ω) 6= 0 . We introduce the denotation Λ 5 =

(0; ∞) \
(⋃4

j=1 Λ j

)
. It is possible there five cases: 1) σ 1n,m (ω) = 0; 2) σ 2n,m (ω) = 0; 3)

σ 3n,m (ω) = 0; 4) σ 4n,m (ω) = 0; 5) σ j n,m (ω) 6= 0 , j = 1 , 4 .

Solve the system of algebraic equations (15). Then from presentation (12) we derived
that

un,m (t) = ϕ 1n,mBj n,m (t) + ϕ 2n,mCj n,m (t) +
βn,m
λ kn,m ω

E j n,m (t) , ω ∈ Λj , j = 1, 5 ,

(16)
where Fourier coefficients βn ,m are defined by the presentations (10),

E j n,m (t) = hn ,m (t)−B j n,m (t)

[ ∫ T

0
hn,m (t) d t+ hn,m (T )

]
−

−C j n,m (t)

[ ∫ T

0
h′n,m (t) t d t+ h′n,m (T )

]
,

B 1n,m (t) =
sin
(
λ kn ,mω t

)
σ 2n,m (ω)

− σ 4n,m (ω)

σ 2n,m (ω)

cos
(
λ kn ,mω t

)
σ 3n,m (ω)

, C 1n,m (t) =
cos

(
λ kn ,mω t

)
σ 3n,m (ω)

,

B 2n,m (t) =
cos

(
λ kn,mω t

)
σ 1n,m (ω)

− σ 3n,m (ω)

σ 1n,m (ω)

sin
(
λ kn,mω t

)
σ 4n,m (ω)

, C 2n,m (t) =
sin
(
λ kn,mω t

)
σ 4n,m (ω)

,

B 3n,m (t) =
cos

(
λ kn,mω t

)
σ 1n,m (ω)

, C 3n,m (t) =
sin
(
λ kn,mω t

)
σ 4n,m (ω)

− σ 2n,m (ω)

σ 1n,m (ω)

cos
(
λ kn,mω t

)
σ 4n,m (ω)

,

B 4n,m (t) =
sin
(
λ kn,mω t

)
σ 2 , n ,m (ω)

, C 4n,m (t) =
cos

(
λ kn,mω t

)
σ 3n,m (ω)

− σ 1n,m (ω)

σ 2n,m (ω)

sin
(
λ kn,mω t

)
σ 3n,m (ω)

,

B 5n,m (t) =
1

σ 5n,m (ω)

[
σ 4n,m (ω) cos

(
λ kn,mω t

)
− σ 3n,m (ω) sin

(
λ kn,mω t

) ]
,

C 5n,m (t) =
1

σ 5n,m (ω)

[
−σ 2n,m (ω) cos

(
λ kn,mω t

)
+ σ 1n,m (ω) sin

(
λ kn,mω t

)]
,

σ5n,m (ω) = σ 1n,m (ω)σ 4n,m (ω)− σ 2n,m (ω)σ 3n,m (ω) 6= 0 , ω ∈ Λ 5 .
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Substituting the presentation of Fourier coefficients (16) of main unknown function into
Fourier series (7), for values of parameter ω ∈ Λ j

(
j = 1, 5

)
we obtain

U (t, x, y) =

∞∑
n,m=1

ϑn ,m (x, y)×

×
[
ϕ 1n,mBj n,m (t) + ϕ 2n,mCj n,m (t) + βn ,m

E j n,m (t)

λ kn ,m ω

]
, j = 1, 5. (17)

Fourier series (17) is a formal solution of the direct problem (1)-(5).

2 Redefinition functions
Using the additional conditions (6) and taking into account (9) and (10), for regular values
of parameter ω ∈ Λ j

(
j = 1, 5

)
we obtain from Fourier series (17) following linear system

of countable system for Fourier coefficients of redefinition functions

ϕ 1n,mBj n,m(ti) + ϕ 2n,mCj n,m(ti) = τi j n,m, i = 1, 2, (18)

where
τi j n,m = ψi n,m − βn,m

E j n,m (ti)

λ kn ,m ω
, j = 1, 5, (19)

ψ i n,m =

∫ l

0

∫ l

0
ψi(x, y)ϑn,m (x, y) d x d y, i = 1, 2. (20)

The system of algebraic equations is solvable, if following determinant is nonzero:

∆ jn,m =

∣∣∣∣ Bj n,m(t1) Cj n,m(t1)
Bj n,m(t2) Cj n,m(t2)

∣∣∣∣ 6= 0. (21)

If the nonzero condition (21) is fulfilled, then from the system (18) we obtain

ϕ 1n,m =
1

∆ jn,m
[τ 2n,mBj n,m(t1)− τ 1n,mBj n,m(t2)] ,

ϕ 2n,m =
1

∆ jn,m
[τ 1n,mCj n,m(t2)− τ 2n,mBj n,m(t1)] , j = 1, 5

or substituting (19) into last relations, we obtain the following presentations

ϕ i n,m = ψ 1n,mχ i 1n,m + ψ 2n,mχ i 2n,m + βn,mχ i 3n,m , i = 1, 2, (22)

where
χ 1 1n,m = − 1

∆ jn,m
Bj n,m(t2), χ 1 2n,m =

1

∆ jn,m
Bj n,m(t1),

χ 1 3n,m =
1

λ kn ,m ω∆ jn,m
[Bj n,m(t2)E j n,m (t1)−Bj n,m(t1)E j n,m (t2)] ,

χ 2 1n,m =
1

∆ jn,m
Cj n,m(t2), χ 2 2n,m = − 1

∆ jn,m
Cj n,m(t1),
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χ 23n,m =
1

λ kn ,m ω∆ jn,m
[Cj n,m(t1)E j n,m (t2)− Cj n,m(t2)E j n,m (t1)] , j = 1, 5.

Since ϕ i n,m are Fourier coefficients (see (13) and (14)), presentations (22) we substitute
into Fourier series

ϕi(x, y) =

∞∑
n,m=1

ϕ i n,m ϑn ,m (x, y), i = 1, 2

and obtain

ϕi(x, y) =

∞∑
n,m=1

ϑn ,m (x, y) [ψ i1n,mχ i 1n,m + ψ 2n,mχ i 2n,m + βn,mχ i 3n,m ] . (23)

We prove absolutely and uniformly convergence of Fourier series (23) in the domain Ω.
We use the concepts of the following well-known Banach spaces. Hilbert coordinate space
`2 of number sequences {ϕn ,m }∞n ,m=1 with norm

‖ϕ ‖ ` 2 =

√√√√ ∞∑
n ,m=1

|ϕn ,m | 2 <∞ .

The space L 2 (Ω 2
l ) of square-summable functions on the domain Ω 2

l = Ω l × Ω l with
norm

‖ϑ (x , y) ‖L 2(Ω 2
l ) =

√∫ l

0

∫ l

0
|ϑ (x , y) | 2d x d y <∞ .

Conditions of smoothness. Let for functions

ψi(x, y) , β(x, y) ∈ C 4k (Ω2
l ), i = 1 , 2

in the domain Ω2
l there exist piecewise continuous 4k + 1 order derivatives.

Then by integrating in parts the functions (10) and (20) 4k+1 times over every variable
E, y, we obtain following relations [23]

|ψi n,m | =
(
l

π

)8k+2

∣∣∣ψ(8k+2)
i n,m

∣∣∣
n 4k+1m 4k+1

, i = 1, 2, |βn,m | =
(
l

π

)8k+2

∣∣∣β(8k+2)
n,m

∣∣∣
n 4k+1m 4k+1

, (24)

∥∥∥ψ (8k+2)
i n,m

∥∥∥
` 2
≤ 2

l

∥∥∥∥ ∂ 8k+2ψi(x, y)

∂ x4k+1 ∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
, i = 1, 2, (25)

∥∥∥β (8k+2)
n,m

∥∥∥
` 2
≤ 2

l

∥∥∥∥ ∂ 8k+2β (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
, (26)

where

ψ
(8k+2)
i n,m =

∫ l

0

∫ l

0

∂ 8k+2ψi(x, y)

∂ x4k+1 ∂ y4k+1
ϑn,m(x, y) d x d y, i = 1, 2,

β (8k+2)
n,m =

∫ l

0

∫ l

0

∂ 8k+2β(x, y)

∂ x4k+1 ∂ y4k+1
ϑn,m(x, y) d x d y.

For regular values of parameter ω ∈ Λ j

(
j = 1, 5

)
we prove that there holds
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Theorem 1. Suppose that the conditions of smoothness, nonzero condition (21) and
following condition are fulfilled:

σ0 i = max
n,m

{|χ1 i n,m | ; |χ2 i n,m | ; |χ3 i n,m |} <∞, i = 1, 2. (27)

Then Fourier series (23) convergence absolutely and uniformly for regular spectral values
from the numerical set ω ∈ Λ j for each j = 1 , 5 and all possible n and m.

Proof. We use formulas (24)-(26) and estimate (27). Using the Cauchy-Schwartz
inequality for series (23), we obtain the estimates

|ϕ i (x, y) | ≤
∞∑

n,m=1

|ϑn,m (x, y) | · |ψ1n,mχ 1 i n,m + ψ 2n,m χ 2 i n,m + β 2n,m χ3 i n,m | ≤

≤ 2

l
σ i

 ∞∑
n,m=1

|ψ1n,m |+
∞∑

n,m=1

|ψ2n,m |+
∞∑

n,m=1

|βn,m |

 ≤
≤ 2

l

(
l

π

)8k+2

σ i

 ∞∑
n,m=1

∣∣∣ψ(8k+2)
1n,m

∣∣∣
n 4k+1m 4k+1

+

∞∑
n,m=1

∣∣∣ψ(8k+2)
2n,m

∣∣∣
n 4k+1m 4k+1

+

∞∑
n,m=1

∣∣∣β(8k+2)
n,m

∣∣∣
n 4k+1m 4k+1

 ≤
≤ 2

l

(
l

π

)8k+2

σ iC 01

[∥∥∥ψ (8k+2)
1n,m

∥∥∥
` 2

+
∥∥∥ψ (8k+2)

2n,m

∥∥∥
` 2

+
∥∥∥β (8k+2)

n,m

∥∥∥
` 2

]
≤

≤ γ 1 i

[∥∥∥∥ ∂ 8k+2ψ 1 (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
+

∥∥∥∥ ∂ 8k+2ψ 2 (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
+

∥∥∥∥ ∂ 8k+2β (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )

]
<∞,

(28)
where

γ 1 i = σ iC 0 1

(
2

l

) 2 ( l
π

)8k+2

, i = 1, 2, C 0 1 =

√√√√ ∞∑
n,m=1

1

n 8k+2m 8k+2
<∞.

From estimate (28) implies the absolutely and uniformly convergence of Fourier series
(23). The theorem 1 is proved.

3 Main unknown function
We determined the redefinition functions as a Fourier series (23). So, redefinition functions
are known. Using representations (22), Fourier series (17), the main unknown function we
can present as

U (t, x, y) =

∞∑
n,m=1

ϑn ,m (x, y) [ψ 1n,mW1j n,m (t) + ψ 2n,mW2j n,m (t) + βn,mW3j n,m (t)] ,

(29)
where

Wij n,m (t) = χ1 i n,mBj n,m (t) + χ2 i n,mCj n,m (t), i = 1, 2,

W3j n,m (t) = χ1 3n,mBj n,m (t) + χ2 3n,mCj n,m (t) +
E j n,m (t)

λ kn ,m ω
, j = 1 , 5.
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To establish the uniqueness of the function U (t, x, y) we suppose that there are two
functions U1 and U2 satisfying the given conditions (1)-(6). Then their difference U =
U1−U2 is a solution of differential equation (1), satisfying conditions (2)-(6) with functions
ψ i(x, y) ≡ 0 (i = 1, 2). By virtue of relations (10) and (20) we have ψi n,m = 0 (i = 1, 2).
Hence, we obtain from formulas (8) and (29) in the domain Ω, that there follows the following
zero identity ∫ l

0

∫ l

0
U (t, x, y)ϑn,m (x, y) d x d y ≡ 0.

Hence, by virtue of the completeness of the systems of eigenfunctions
{√

2
l sin π n

l x
}
,{√

2
l sin πm

l y
}

in L 2

(
Ω 2
l

)
we deduce that U (t, x, y) ≡ 0 for all x ∈ Ω 2

l ≡ [0 , l] 2 and
t ∈ ΩT ≡ [0 ; T ] .

Therefore, for regular values of spectral parameter ω the function U (t, x, y) is unique
solution of differential equation (1) with conditions (2)–(6), if this function exists in the
domain Ω .

Theorem 2. Let the conditions of the theorem 1 be fulfilled. Then for regular values
of spectral parameter ω ∈ Λ j

(
j = 1 , 5

)
the series (29) converge. At the same time, their

term by term differentiation is possible.
Proof. By virtue of conditions of the theorem 1, the functions Wi j n,m (t), i =

1, 3, j = 1, 5 uniformly bounded on the segment [0; T ]. So for any positive integers n, m
there exist finite constant C 2 , that there takes place the following estimates

max
n,m

{
max
i=1, 3

max
j=1, 5

max
0≤t≤T

|W ij n,m (t) | ; max
i=1, 3

max
j=1, 5

max
0≤t≤T

∣∣W ′′ij n,m (t)
∣∣} ≤ C0 2 . (30)

Using estimates (24)-(26) and (30), analogously to the estimate (28), for series (29) we
obtain

|U (t, x, y) | ≤
∞∑

n,m=1

|ϑn,m (x, y) | · |ψ 1n,mW 1j n,m (t)+

+ψ 2n,mW 2j n,m (t) + βn,mW 3 j n,m (t) | ≤

≤ γ 2

[∥∥∥∥ ∂ 8k+2ψ 1 (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
+

∥∥∥∥ ∂ 8k+2ψ 2 (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
+

∥∥∥∥ ∂ 8k+2β (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )

]
<∞,

(31)
where γ 2 = C 01C 02

(
2
l

) 2 ( l
π

)8k+2
.

Function (29) differentiate the required number of times

Utt(t, x, y) =

∞∑
n,m=1

ϑn ,m (x, y)
[
ψ 1n,mW

′′
1j n,m (t) + ψ 2n,mW

′′
2j n,m (t) + βn,mW

′′
3j n,m (t)

]
,

(32)
∂ 4k

∂ x 4k
U (t, x, y) =

∞∑
n,m=1

(π n
l

) 4k
ϑn ,m (x, y)×

× [ψ 1n,mW1j n,m (t) + ψ 2n,mW2j n,m (t) + βn,mW3j n,m (t)] , (33)
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∂ 4k

∂ y 4k
U (t, x, y) =

∞∑
n,m=1

(πm
l

) 4k
ϑn ,m (x, y)×

× [ψ 1n,mW1j n,m (t) + ψ 2n,mW2j n,m (t) + βn,mW3j n,m (t)] . (34)

The expansions of the following functions into Fourier series are defined in the domain
Ω 2
l in a similar way

∂ 4k+2

∂ t 2∂ x 4k
U (t, x, y),

∂ 4k+2

∂ t 2∂ y 4k
U (t, x, y).

The convergence of series (32) is proved similarly to the proof of the convergence of series
(29). Let us show the convergence of series (33) and (34). Taking into account formulas
(24)-(26) and (30) and applying the Cauchy-Schwarz inequality, we obtain:∣∣∣∣ ∂ 4k

∂ x 4k
U (t, x, y)

∣∣∣∣ ≤ ∞∑
n,m=1

(π n
l

) 4k
|un,m(t) | · |ϑn,m(x, y) | ≤

≤
∞∑

n,m=1

(π n
l

) 4k
|ϑn,m (x, y) | · |ψ1n,mW 1j n,m (t) + ψ 2n,mW 2j n,m (t) + β 2n,mW 3j n,m (t) | ≤

≤ 2

l

(π
l

) 4k
C 02

 ∞∑
n,m=1

n 4k |ψ1n,m |+
∞∑

n,m=1

n 4k |ψ2n,m |+
∞∑

n,m=1

n 4k |βn,m |

 ≤
≤ 2

l

(
l

π

)4k+2

C 02

 ∞∑
n,m=1

∣∣∣ψ(8k+2)
1n,m

∣∣∣
nm 4k+1

+

∞∑
n,m=1

∣∣∣ψ(8k+2)
2n,m

∣∣∣
nm 4k+1

+

∞∑
n,m=1

∣∣∣β(8k+2)
n,m

∣∣∣
nm 4k+1

 ≤
≤ 2

l

(
l

π

)4k+2

C 02C 03

[∥∥∥ψ (8k+2)
1n,m

∥∥∥
` 2

+
∥∥∥ψ (8k+2)

2n,m

∥∥∥
` 2

+
∥∥∥β (8k+2)

n,m

∥∥∥
` 2

]
≤

≤ γ 3

[∥∥∥∥ ∂ 8k+2ψ 1 (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
+

∥∥∥∥ ∂ 8k+2ψ 2 (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
+

∥∥∥∥ ∂ 8k+2β (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )

]
<∞,

(35)
where γ 3 =

(
2
l

)2 ( l
π

)4k+2
C 02C 03, C 0 3 =

√∑∞
n,m=1

1
nm 8k+2 <∞;

∣∣∣∣ ∂ 4k

∂ y 4k
U (t, x, y)

∣∣∣∣ ≤ ∞∑
n,m=1

(πm
l

) 4k
|un,m(t) | · |ϑn,m(x, y) | ≤

≤ 2

l

(π
l

) 4k
C 02

 ∞∑
n,m=1

m 4k |ψ1n,m |+
∞∑

n,m=1

m 4k |ψ2n,m |+
∞∑

n,m=1

m 4k |βn,m |

 ≤
≤ 2

l

(
l

π

)4k+2

C 02

 ∞∑
n,m=1

∣∣∣ψ(8k+2)
1n,m

∣∣∣
n 4k+1m

+
∞∑

n,m=1

∣∣∣ψ(8k+2)
2n,m

∣∣∣
n 4k+1m

+
∞∑

n,m=1

∣∣∣β(8k+2)
n,m

∣∣∣
n 4k+1m

 ≤
≤ 2

l

(
l

π

)4k+2

C 02C 04

[∥∥∥ψ (8k+2)
1n,m

∥∥∥
` 2

+
∥∥∥ψ (8k+2)

2n,m

∥∥∥
` 2

+
∥∥∥β (8k+2)

n,m

∥∥∥
` 2

]
≤
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≤ γ 4

[∥∥∥∥ ∂ 8k+2ψ 1 (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
+

∥∥∥∥ ∂ 8k+2ψ 2 (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
+

∥∥∥∥ ∂ 8k+2β (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )

]
<∞,

(36)
where γ 4 =

(
2
l

)2 ( l
π

)4k+2
C 02C 04, C 0 4 =

√∑∞
n,m=1

1
n 8k+2m

<∞.
The convergence of Fourier series for functions

∂ 4k+2

∂ t 2∂ x 4k
U (t, x, y),

∂ 4k+2

∂ t 2∂ y 4k
U (t, x, y)

is easy to prove, and the necessary estimates are obtained in a similar way as was done for
the cases of estimates (31), (35), (36) in the domain Ωm

l . Therefore, the function U (t, x, y)
belongs to the class of functions (5). Theorem 2 is proved.

4 Stability of the solution U (t, x, y) with respect to
functions ψ1(x, y), ψ2(x, y)

Theorem 3. Suppose that all the conditions of theorem 2 are fulfilled. Then, the function
U (t, x, y) as a solution of the problem (1)–(6) for regular values of the spectral parameter
ω ∈ Λ j

(
j = 1 , 5

)
is stable with respect to given integral functionψ1(x, y), ψ2(x, y).

Proof. We show that the solution of the mixed differential equation (1) U (t, x, y) is
stable with respect to a given functions ψ1(x, y), ψ2(x, y). Let U 1 (t, x, y) and U 2 (t, x, y)
be two different solutions of the inverse boundary value problem (1)-(6), corresponding to
two different values of the function ψ 1 1(x), ψ 1 2(x) and ψ 21(x), ψ 2 2(x), respectively.

We put that max {|ψ 11n,m − ψ 12n,m | ; |ψ 21n,m − ψ 22n,m |} < δn,m ,where 0 < δn ,m
is sufficiently small positive quantity and the series

∑∞
n,m=1 | δn,m | is convergent. Then,

taking this fact into account, by virtue of the conditions of the theorem, from the Fourier
series (29) it is easy to obtain that

‖U 1(t, x, y)− U 2(t, x, y) ‖C (Ω) ≤
2

l
C 02

∞∑
n ,m=1

[|ψ 11n,m − ψ 12n,m |+ |ψ 21n,m − ψ 22n,m |] <

<
2

l
C 02

∞∑
n ,m=1

| δn ,m | <∞.

If we put ε = 2
lC 02

∑∞
n ,m=1 | δn ,m | < ∞, then from last estimate we finally obtain

assertions about the stability of the solution of differential equation (1) with respect to a
given functions ψ1(x, y), ψ2(x, y). The theorem 3 is proved.

Remark. Analogously one can prove that the function U (t, x, y) as a solution of the
problem (1)–(6) for regular values of the spectral parameter ω ∈ Λ j

(
j = 1 , 5

)
is stable

with respect to given small parameters ε1, ε2.
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