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Introduction

This paper work is devoted to the study of the Dirichlet problem in the class of
A (z) —harmonic functions. Solution of the Beltrami equation

fz(2) = A(2) [2 (%) (1)
is called A (z) — analytic function. It is well-known, equation (1) is directly related
to quasiconformal mappings. In generally assumed that A (z) is measurable function
and |A (z)] < C < 1 almost everywhere in the domain D C C. The real part of the
solution of equation (1) (ie. u(z) := Re f(z)) is called A (z) —harmonic function.
The work consists of an introduction and three paragraphs. In the first paragraph
we give brief information on A (z) — analytic, A (2) — harmonic functions that will
be used in subsequent studies of A (z) —harmonic functions, introduce the operator
A 4u, which is an analogue of the well-known Laplace operator Au, the functional
properties of A (z)—harmonic functions, the Poisson integral formula for A (z)—
harmonic functions, mean theorems and analogue of the Harnac’s theorem. In the
second section, we give the definition of a A (z) —subharmonic function and some
of its properties. For exaple maximum principle for A (z) —subharmonic functions,
family locally uniformly bounded A (z) —subharmonic functions and etc. A method
for solving the Dirichlet problem for the Laplace equation based on the properties
of subharmonic functions. O.Perron |7] gave the initial presentation of the method,
which was substantially developed by N.Wiener and M.V.Keldysh [3]. The third
section is devoted to the study of the Perron method for the Dirichlet problem in the
class of A (z) —harmonic functions.

1 On the class of A (z) —analytic and A (z) —harmonic
functions

Solutions to the Beltrami equation:

Daf ()= L)

0z
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is directly related to quasiconformal mappings. In the general case, with respect to
the function A (z), it is assumed that it is measurable and |A ()| < C' < 1 almost
everywhere in the domain under consideration D C C. In the literature, solutions to
eq. (1) are usually called A (z) —analytic functions.

Theorem 1. [1] For any measurable function on the complex plane of the C function,

A(2): ||A]q = Sup {[A(x)]} <1

there exists a unique homeomorphic solution ¢ (z) of eq. (1) such that the ¢ points
remain fixed 0, 1, oo.

The first part of section 1 is based on the fundamental work of A. Sadullaev and
N. Zhabborov [9]. The most interesting is the case when A (z)—the antianalytic
function, 0A = 0, in a domain D C C such that |A(2)] < C < 1, Vz € D. Then,
according to (1), the class A (z) —of analytic functions f € O4 (D) is characterized
by the fact that D4 f = 0 . Since the anti-analytic function is infinitely smooth, then
Oa (D) C C>(D) ([8,9, ?]). In this case, the following

Theorem 2. (An analogue of the Cauchy theorem, see [9]) If f € O4(D)(C (D),
where is D C C—a domain with a rectifiable boundary, 0D, then

/f(z)(dz—i—A(z)dZ):O,
oD

Let us now assume that the domain D C C is convex and £ € D—its fixed point.
Consider the function

1 1
K = . 2
(2:8) 2mi L — ¢ 4 S A(T)d7'7 @)
7(§,2)

where 7 (£, z) —is a smooth curve connecting the points &, z € D.

Theorem 3. (Cauchy formula, see [9]). Let D C C is a convex domain and G C D

is arbitrary subdomain, with a piecewise smooth boundary G, which lies compactly
in D. Then for any function f (z) € O (G)(C (G) the formula holds

f(2)=/K(§7Z)f(§) (d¢ + A(€)dE) .= € G. 3)
oG

Theorem 4. (see [4, 5, 10]). The real part of the A (z) —analytic function f € O4(D)
satisfies the equation in the domain D

0 1 ou ou 0 1 ou ~0u
Agu = =— | ——— [(1 + |A]*) == — 24— — | ——= (1 +|A]))=— — 24— || =0.
AT L—]AP {< AN 8zH+82 {1—\A|2 {( AN azH
(4)
And vice versa, if D— simply connected domain, u € C*(D), u : D — R twice
differentiable function satisfies differential equation (4), then there exists f € O4(G) :
u = Re f.
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In connection with Theorem 4, it is natural to introduce the concept of A (z) —harmonic
function as follows:

Definition 1. Twice differentiable functionu € C*(D),u : D — R is called A (z) —harmonic
in the domain D, if everywhere in D function u(z) satisfies differential equation (4).
The class of A (z)—harmonic functions in the domain D is denoted by ha (D).

Theorem 5. (about mean value, see [5])). Let D is conver domain. If the function
u(z) is A(z) —harmonic in the lemniscate L(z,R) = {£ € D : |¥(2,§)| < R} C D,
then for any r < R the following mean values hold

zmbjg § @) g + Ace)ae], )
Y(z8)l=r

—WQ [ woo-1aom “oE ©
e
wherew(z,f):z—f—l—m

7(2:6)

For A (z) —harmonic functions, the following Dirichlet problem is naturally con-
sidered: Dirichlet problem. A bounded domain is G C D given and a continuous
function is given ¢ (§) on the boundary 0G. It is required to find a A (z) —function
u(z) € ha(G)YNC (G) : ulsg = ¢ that is harmonic in the domain G and continuous
on the closure G. The well-known classical Poisson formula is the simplest and also
the most important example of solving the Dirichlet problem in the class of harmonic
functions. In the case where the domain G is a lemniscate G = L(a, R), the following
analogue takes place

Theorem 6. (an analogue of the Poisson formula for A (z) —harmonic functions see
[10]). If the function is (&) continuous on the boundary of the lemniscate L(a, R) C
D, then the function

o R~ Jy(a, > :
=g s " i + ace)ag @

[¥(a.8)|=R

is a solution of the Dirichlet problem in L(a, R). For continuous functions, the fol-
lowing harmonicity criteria hold. Let’s assume that a D—convexr domain.

Theorem 7. (see [5]). For a function, the u(z) € C (D) following statements are
equivalent:

1) u e hA<D),’

2) For any z € D and L(z,r) CC D the following equality holds

u(e) = / w(€)|de + A(€) dé]
[(&,2)|=r
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3) For any z € D and L(z,r) CC D the following equality holds

u@) =5 [ w©an (®)

[ (&,2)|<r

Corollary 1. (extremum principle). If the function w € ha(D) reaches extremum
inside the domain of domain GG, then u = const.

Corollary 2. Dirichlet problem
Asu(z)=0, z€G, ue hA(G)ﬂC(G) . ulag =@, ¢ € C(0G)
has a unique solution.

Theorem 8. (analogue of the Harnac’s see [7]) . A monotone sequence of harmonic
functions u; € ha(D) either uniformly (inside D) converges to infinity, or uniformly
converges to some harmonic function u € ha(D).

2 Class of A(z) —subharmonic functions

In this section, we have devoted to the study of some properties of subharmonic
functions.

Definition 2. A function u : D — [—00;00) is said to be A (z)—subharmonic in a
convexr domain G C C if it satisfies the following two conditions:
1) u(z) is upper semicontinuous, i.e. Vzy € G there is an inequality

lim u(w) < u(z), 9)

w—rz0

(1t follows that the function is bounded from above on any compact subset of the
domain G );

2) for each point ¥Vzy € G there is a number r(z9) > 0 such that r < r(zy) the
inequality holds for all

u(z) <~ 74 w (€) |de + A(€)de]. (10)

[%(&:20)|=r

where 1s the function

V(€ 20) =& — 20+ / A(r)dr

v(§,20)

for a convexr domain G C C exists and has a unique zero at a point zo (see [9]).
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A function u : D — [—00;00) is called A (z) —subharmonic in an arbitrary do-
main D, if it is A (z) —subharmonic in any convex subdomain G C D. The class of
A (z) —subharmonic functions in the domain D is denoted by shy (D). In what fol-
lows, for convenience, the trivial function u = —oo will also be included in sha (D).
Let us present some simple properties A (z) —of subharmonic functions. The following
4 properties are directly obtained from the definition.

1) a linear combination of A (z) —subharmonic functions with non-negative coef-
ficients is a A (z) —subharmonic function:

u; € sha(D),c; >0 (j=1,2,...,m) = crus + ... + ¢y, € sha(D);

2) the maximum of a finite number of A (z) —subharmonic functions is also A (z) —
subharmonic:

u; € sha(D),(j=1,2,...,m) = u(z) :==max{uy (2),...,uy (2)} € sha (D);

3) the limit of a monotonically decreasing sequence A (z) —of subharmonic func-
tions is A (z) —subharmonic:

u; € sha (D), u;(2) > ujp1 (2) = u(z) == lim u; (2) € sha (D);

Jj—o0

4) a uniformly descending sequence of A (z) —subharmonic functions converges to
a subharmonic function:

uj € shy (D), u; Zu=ué€ shy(D);

Let us prove further properties
5) (maximum principle, see [6]). Let be u € shy (D) and at some point 2o € D it
reaches its maximum, then u|, = const.

Proof. Let 329 € D : u(z9) = sup {u(z)}. Consider the set
z€D

M:={zeD:u(z)=u(z)}.

Then zp € Mand from the semicontinuity u(z) in D a bunch of Mclosed in D. From
the definition of a A (z) —subharmonic function for an arbitrary fixed w € M, we
have

u(e) =u@) < 5§ ()]s AQE] < ua) r <7 ().
[¥(&,w)|=r

Hence it follows that uly;(, ) = u(20), because if 3¢ € IL(p,r) : u(§) < u(2),
then from semi-continuity u (z) < u (zp) in some non-empty open piece A C dL(w, ),
which would contradict the equality u(w) = u(zp). And so

Ugr(wm = u(20),Y0 <r <7 (%)

and u]L(w ) = U (20) . Hence, w € Mis an interior point and Mis an open set in D.
Mean M = D. Property 5 is proved. O
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6) if for functions v € shu (D), u € ha (D) their narrowing on the border of
the domain G CC D satisfy the inequality v|,, < ulyg, then the inequality holds
v|g < ulg. The proof simply follows from the maximum principle applied to the
difference u —v. 7) if at the border 9D given a continuous function ¢ € C'(9D) ,then
in the class

U={vesha(D)NC(D): uly, = ¢}

A (z) —harmonic function u : u|,,, = ¢ satisfies the maximum condition, i.e.
u(z) >wv(z),Vz € D,Vv e U.

8) For A (z)—a subharmonic function v € shy (D), where D C C is a convex
domain, the second condition (10), which was originally required for sufficiently small
r < r(zo), is satisfied for all r : L(zq,7) CC D.

Proof. The existence of a decreasing sequence follows ¢; € C (9L (20,7)) @ ¢; 4
V| oL(x) rom the upper semicontinuity at the boundary of the lemniscate 9L (20,7).
Let us construct A (z) — harmonic function u; in the lemniscate L(zo,r) with the
boundary value u;] oL = (pj. Since @; > v|yy then according to property 6
implies that

20,T) 20,7)?

uj’L(zo,r) Z U|L(zo,r)‘

We have

v Suyo) =g b O A©E] = § e (O]d+A©

2rr
¢ (20.8)|=r [ (20,€)|=r

which 7 — oo gives us

1 _
v S5 f 0©)]de+ A dé]
[¥(20,8)|=r

The preposition is proved. O

It
{ui(2),ue(2), ..., un(2)} C sha (D)

is a finite family of A (z) —subharmonic in D C C functions, then

u(z) = sup{uq(2), uz(2),...,un(2)}

is a A (z) —subharmonic function. The situation is different when we consider an
arbitrary family of {u,(2)}, a € A subharmonic functions. In this case, it is necessary

to require u(z) = sup {u,(z)} was locally bounded, which is the same {u,(2)} locally
acA
uniformly bounded.
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Theorem 9. Let {u,(2)}, a € A, be an arbitrary locally uniformly bounded family

of A (z) —subharmonic functions and u(z) = sup{u.(2)}. Then the regularization
acA

u*(z) == llul_imzu (w)

is an A (z) —subharmonic function in D. Further, if {u;(2)} is a sequence of locally
uniformly bounded A (z)—subharmonic functions and

u(z) = lim u;(2),
Jj—oo

then u*(z) is an A(z) —subharmonic function.

Proof. We fix an arbitrary convex domain G C D and, as usual, construct a function
¥ (z,€) in G. For each function u,(z), a € A, from the definition of a A (z) —subharmonic
function we have

¥ (a,8) = ¢ (a,2) +1 (2,€)
1 - ¥ (2) == (a,2)
Ug(2) < — Ug A =
S 2”T¢<z,g/>:r e E=2+97 (50)

o [l o) e+ A dE)
[¥(a,z)|=r
wherer < rg: L(z,79) CC G.Hence,u(z) < 3= [ ua(z+ 971 (2,€) [d+ A(€) dE|.

2mr
[¥(a,z)|=r
Let us write this inequality for any w € L(z,d), where § > 0 such that r + § < rg:
1 B )
uw) <o [ v (w7 (29) e+ A(E) ]
[¥(a,z)|=r

If we take a regularization on both sides, then

B <y [ B (s o (0) |+ A ]
[¥(a,2)|=r
And we’ll get that
1 _ 1 _
@<y [ et o)A =5 [ el A
[v(a,2)|=r [¥(z,8)|=r

which proves the A (z) —subharmonicity «* in G and since G C D—arbitrary, then
u* is A (z) —subharmonic in D. The second part of the Theorem, for a sequence of
locally uniformly bounded A (z) —subharmonic functions, the proof is similar to the
previous one. The theorem is proved. O
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3 Perron method

Let us be given a bounded domain D = {Z eC:|A(z)| <1,suplA(z)| <1 } ccC

and G CC D a function ¢ € C' (0G) . The classical internal Dirichlet problem is that
find function w € ha (D)NC (D), w|yp = ¢|yp - From the maximum principle for
A (z) —harmonic functions, it immediately follows that if a solution to the Dirichlet
problem exists, then it is unique. In one particular case, when the domainZ (zg,7) CC
G lemniscate, in the section 1 the solution was constructed constructively, explicitly
by the Poisson integral. To solve the Dirichlet problem in a convex domain G C C
we use the well-known Perron method. We consider it a very convenient apparatus in
potential theory and in the theory of harmonic functions; perhaps the method is very
useful in other boundary value problems of elliptic equations. For a given continuous
function, ¢ € C (0G) we set

Ua (o, G) = {uGshA(G): lim  u(€) gap(f)}, w(z):=sup{u(z):ueUy(p,G)}.

z—€€0D
Theorem 10. Function w(z) € ha (G) and it coincides with its reqularization i.e.
w(z)=w"(2),Vz € G.

Proof. As ¢ € C (0G) and the norm ||¢|| 5 is bounded by a constant M > 0, then by
the maximum principle, each function u € U4 (¢, G) bounded from above u (z) < M
therefore, w*|, < M. According to an analog of the Choquet Lemma, there exists a
countable family of functions

u; €Us(p,G): v (2) = (sup{u; (2) : j EN}) =w*(2).

is an increasing sequence of

The sequence w; (z) = max {uy (2),u2 (2),...,u; (2)}
1) > () () > (o).
r)

A—subharmonic functions, and w; € Ua (¢, ), Wit

We fix L (z0,7) CC G and A (z) —harmonize in L (z,

r), i.e.

~ S (&) B [de 1 A ()
W (2) = 4 W(E&z0)=r
w; (2),z € G\L (29,7)

¢,z € L(z,7)

Then we find )
(.Uj € ShA (G) N hA (L (ZOa T))

such that it follows that

w;(z) > w;(2), Vz € L(z,7)

and

oj)j (2) Tw; (2),Vz € G\L (20,7) .
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Since, in addition u (z) < M, then by analogy with Harnack’s theorem (see theorem
8) u € ha (L (z9,7)). Therefore u € ha(G), because L (z9,7) CC G—arbitrary. The
obvious inequality v (2) < w (2) also w|, = w*|, implies

w(z)=u"(2) <w(z) <w"(2),Vz € G.

The theorem is proved . O

Function coincidence w (z) at the boundary 0G with a given function ¢ (§) de-
pends on the property 0G,on the regularity of the domain G.

Definition 3. We say that a domain G C C has a global A (z) —barrier at & € 0G
if it exists b € sha (G) such that

lirrgl b(z) =0, sup{b(z):2z¢€ G\L(&,r)} <0,¥r>0:L(&,r) CG.
z—&0
zeG

Domain G C C called has local A (z) —barrier at a point &, € JG if there exists a
lemniscate L (§o,7) C D such that the intersection L ({y,7) N G has global barrier.

Proposition 1. If the domain G has a local barrier at the point & € OG then the
domain G has a A (z) —global barrier at that point.

Proof. 3L (&, R) C D such that G N L (&, R) has a global A (z) —barrier at &, i.e.
da € sha (GNL(&,r)) : linél a(z) =0 and
z—
zEGﬁL(%o,r)

sup{a(z):z€ G, r <y (&,2)| < R} <0,Vr <R.

We fix § € (0;r) and consider following A (z) —subharmonic function in D: [(z2) =

1 G E0)]
slsup{b(z): 2 € G, 0 < |¢(&,2)| < R} m% - Then I]y1 6 5 > lope s AS
lim a(z)=0

Z—>§o
2€GNL(&o,r)

and [ (§) = —oo, then there exists 0 < & < d such that I|5 ¢, .y < @lyp g, o)- Then it is

a(z),z€ GNL(&,9I)
easy to check that the function b (2) = < max{a(2),l(2)}, z € GN{L (&,e) \L (&,9)}
[(2),z € G\L (&,¢)
is A (z) —barrier at the point &. The preposition is proved . O

It follows that the local A (z) —barrier and the global A (z) —barrier are equivalent.

Theorem 11. If the domain G has a point § € 0G A (z) —barrier, then

lim w(z) = ¢ ().
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Proof. Set M = |l¢||,p and fix ¢ > 0.From continuity ¢ € C(9G), there exists
d>0:|p(&) —p (&) <e £€€0GNL(&,J). Since at the point & € JG there is a
A—barrier, then there b € sh (G) is one such that

lim b(z) =0, sup{b(z):2z € G\L (&,e)} = A(e) <0.

Z*}fo
zeG

Let us estimate the boundary values of the function

v5<z>=w<so>—e—%<M+w<so>>-

If &€ 0GNL(&,I), then

lim v, (2) < —e+ ¢ (&) < ¢ (€).

z—¢&
zeD

If £ € 0G\L (&,0) , then

MUE(z)§—6+90(§0)—M—90(§0)§90(5)-

z—E€
zeG

Hence, lirr% Ve (2) < p(€), V€ € 0G and v, € Ua (p,G) . Hence v, (2) < w(z) and
z—
zeG

lim w(z) = lim v. (2) = —e + ¢ (&),

Z—}&) Z—)EQ
zeG zeG
which at ¢ — 0+ gives
lim w (2) > ¢ (%) (11)
Z—)EO
zeG

To prove the reverse inequality, we fix u € Uy (¢, G) and consider the sum

u(z) +we (2) € sha (G),

where v. (2) = —¢ (€) — ¢ — %2 (M = 5 (&)).

We have
lim [u(z) + w. (2)] < lim w (2) + lim w, (2) .
z—¢ z—¢ z—¢&
2€G z€G z€G

If ¢ € 0GN L (&,0), now then

Eva(@ < —e—p (&) <—p().
zeG

If £ € 0G\L (&,0) , then

T v. (2) < — — 9 (60) = (M = (&) < — = M <~ (6).
zeG
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From here
U+ Welyg <0

and according to the principle of maximum

u+ wel, <0,
ie.

ulg < —welg

. Since it is u € Uy (p, G) —arbitrary, then
wlg < —welg.

Hence, lim w(z) < lim [—w. (2)] =€+ ¢ (&) and when ¢ — 0+ we get
o
ze z

Zﬁjﬂg w(z) < ¢ (&) (12)
2eC

Combining this with (10) we arrive at hHgl w(z) = ¢ (&) . The theorem is proved. [
z—E&0
2€G

Corollary 3. . If the domain G C D has a A(z) —barrier at all boundary points
¢ € OG then the Dirichlet problem of the equation

{AAu =0
u|aG =¢(§)

always (for any function Vi € C (0D)) has a solution u € ha (G) N C (G), and this
solution is unique.

Definition 4. A domain G C D is called A(z)—regular domain if it contains a
negative A (z) —subharmonic function p € sha (G) such that

plg <0, ZlE%GP(Z) = 0.

Here the last condition means that for any number the ¢ < 0 set {z € G : p(z) < ¢}
15 a compact set in D.

The following theorem shows that there is a close relationship between A (z) —regularity
and A (z) —barrier in domains.

Theorem 12. The region G has a barrier at every point £ € OGif and only if domain
G is A(z) —regular.
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Proof. Let the domain G have a barrier at each point £ € 9G. We fix a point w € G
and a function 5= In[¢ (&, w)|, £ € OG. According to the Dirichlet problem A u (z) =
0, ulye = 5= In |t (£, w)] has a unique solution

uwehA(G)ﬂC(@)

Then 5= In |t (z,w)| — u,, (2) is the defining, A (z) —subharmonic exhaustion function
of the domain G, i.e.

%ln|w(§,z)| —u; (§) € sha (G)

and

G’—{zeD:%ln|w(§,z)|—uz(£)<0}.

Let us G is an A (z) —regular and p € sha (G), pls < 0, ligr%Gp(z) = 0. We fix
z—=EE

& € 0G and put ¢ (€) = |@ (& &), € € dG. Let’s build a function w(z). By
Theorem 10, it is harmonic in G. Since the function v (2) = | (2,&)|%, z € G belongs
to the class Uy (¢, D), then w (2) > |4 (2, &)|°. Therefore, the function b (z) = —w (2)
satisfies the sup{b(z) : z € G\L (&,r)} < 0,¥Vr > 0: L(&,r) C G barrier function
condition. It remains to prove the condition

lim b(z) = 0.
Z—)fo
zeG

Fixing the lemniscate L = L (&,r) C D and compact K C 0L N G. Then py :=
L 2
m}z{xxp(z) < 0. Let M := f%%XW (2,&)|” and
6(€) = M,z € (OLNG)\K
" 10,z€ (OLNG)UK

We take the Poisson integral

u(z) = /gb({)ﬂ({,z) |d§+A(§)df},Vz € L.
oL

Then u € ha(L),0<wu(z) <M and

My (K')

2rr

I

w6 =5 [ 0O s+ A© e = 5 [ 0(6)|dg+ A €] -
oL K

where K’ = (OLNG)\K, and p(K') = [ |d5+A(£)df‘ is 1 measure of the
K/

set K’. In addition, the boundary function ¢ ({) = M on the open piece K' =
(OL N G)\K. Therefore, u|,r = M. We fix w € Uy (p,G) and take the auxiliary

A (2) —subharmonic into L N G the function f(z) = —r2 + 220 — 4 (2). Let us

pol
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show that lim [w(2)+ f(2)] < 0, V¢ € 9(LNG), from which it follows that

z—¢&
z€LNG

w(z)+ f(2) <0in LNG. At £ € LN OG we have

i (w()+ /()< T w+ T f()<0@-r—u©) = b (&) <0
zeLNG zeLNG zeLNG

When ¢ € K', so

lim w(z)+ lim f(z) <M+ lim [~u(z)]=M—-M=0
z—€ z—¢& z—¢&
z€LNG zeLNG zeLNG

and finally, if £ € K, then

lim w(z)+ lim f(z) <M+ lim p(Z)M:M—M:(J.
z—¢& z—¢€ z—¢€ |p0|
zeLNG zeLNG zeLNG

Thus, w(z) + f(2) < 0in L NG and since w € Ux(p,G) n is arbitrary, then
w(z)+ f(z) <0on LNG. Hence it follows that

- - My (K)
1 < -1 < —(—r?— =r? 47
Ty () < — T f (2) < — (% —u (@) = 2+ 250
zeG zeG
Choosing piece K’ = (0L N G) \ K so small that
M !/
p(K') <2
2mr
Then .
0 < lim w(2) < 27
z—¢&
z€G
and for r — +0 we get
lim w (2) = 0.
z—¢&
zeG
The theorem is proved . O
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