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Abstract
This paper work is devoted to the study of the Dirichlet problem in the class

of A (z)−harmonic functions.
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Introduction
This paper work is devoted to the study of the Dirichlet problem in the class of
A (z)−harmonic functions. Solution of the Beltrami equation

fz̄ (z) = A (z) fz (z) (1)

is called A (z)− analytic function. It is well-known, equation (1) is directly related
to quasiconformal mappings. In generally assumed that A (z) is measurable function
and |A (z)| ≤ C < 1 almost everywhere in the domain D ⊂ C. The real part of the
solution of equation (1) ( i.e. u (z) := Re f (z)) is called A (z)−harmonic function.
The work consists of an introduction and three paragraphs. In the first paragraph
we give brief information on A (z)− analytic, A (z)− harmonic functions that will
be used in subsequent studies of A (z)−harmonic functions, introduce the operator
∆Au, which is an analogue of the well-known Laplace operator ∆u, the functional
properties of A (z)−harmonic functions, the Poisson integral formula for A (z)−
harmonic functions, mean theorems and analogue of the Harnac’s theorem. In the
second section, we give the definition of a A (z)−subharmonic function and some
of its properties. For exaple maximum principle for A (z)−subharmonic functions,
family locally uniformly bounded A (z)−subharmonic functions and etc. A method
for solving the Dirichlet problem for the Laplace equation based on the properties
of subharmonic functions. O.Perron [7] gave the initial presentation of the method,
which was substantially developed by N.Wiener and M.V.Keldysh [3]. The third
section is devoted to the study of the Perron method for the Dirichlet problem in the
class of A (z)−harmonic functions.

1 On the class of A (z)−analytic and A (z)−harmonic
functions

Solutions to the Beltrami equation:

D̄Af (z) :=
∂f (z)

∂z̄
− A (z)

∂f (z)

∂z
= 0
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is directly related to quasiconformal mappings. In the general case, with respect to
the function A (z), it is assumed that it is measurable and |A (z)| ≤ C < 1 almost
everywhere in the domain under consideration D ⊂ C. In the literature, solutions to
eq. (1) are usually called A (z)−analytic functions.

Theorem 1. [1] For any measurable function on the complex plane of the C function,

A (z) : ‖A‖C := sup
z∈C
{|A (z)|} < 1

there exists a unique homeomorphic solution ψ (z) of eq. (1) such that the ψ points
remain fixed 0, 1, ∞.

The first part of section 1 is based on the fundamental work of A. Sadullaev and
N. Zhabborov [9]. The most interesting is the case when A (z)−the antianalytic
function, ∂A = 0, in a domain D ⊂ C such that |A (z)| ≤ C < 1, ∀z ∈ D. Then,
according to (1), the class A (z)−of analytic functions f ∈ OA (D) is characterized
by the fact that D̄Af = 0 . Since the anti-analytic function is infinitely smooth, then
OA (D) ⊂ C∞ (D) ([8, 9, ?]). In this case, the following

Theorem 2. (An analogue of the Cauchy theorem, see [9]) If f ∈ OA (D)
⋂
C
(
D̄
)
,

where is D ⊂ C−a domain with a rectifiable boundary, ∂D,then∫
∂D

f (z) (dz + A (z) d z̄) = 0 .

Let us now assume that the domain D ⊂ C is convex and ξ ∈ D−its fixed point.
Consider the function

K (z, ξ) =
1

2πi
.

1

z − ξ +
∫

γ(ξ,z)

Ā (τ) dτ
, (2)

where γ (ξ, z)−is a smooth curve connecting the points ξ, z ∈ D.

Theorem 3. (Cauchy formula, see [9]). Let D ⊂ C is a convex domain and G ⊂ D
is arbitrary subdomain, with a piecewise smooth boundary ∂G, which lies compactly
in D. Then for any function f (z) ∈ OA (G)

⋂
C
(
Ḡ
)
the formula holds

f (z) =

∫
∂G

K (ξ, z)f (ξ)
(
dξ + A (ξ) d ξ̄

)
, z ∈ G. (3)

Theorem 4. (see [4, 5, 10]). The real part of the A (z)−analytic function f ∈ OA(D)
satisfies the equation in the domain D

∆Au :=
∂

∂z

[
1

1− |A|2

[
(1 + |A|2)

∂u

∂z̄
− 2A

∂u

∂z

]]
+
∂

∂z̄

[
1

1− |A|2

[
(1 + |A|2)

∂u

∂z
− 2Ā

∂u

∂z̄

]]
= 0.

(4)
And vice versa, if D− simply connected domain, u ∈ C2(D), u : D → R twice

differentiable function satisfies differential equation (4), then there exists f ∈ OA(G) :
u = Re f.

232



Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

In connection with Theorem 4, it is natural to introduce the concept ofA (z)−harmonic
function as follows:

Definition 1. Twice differentiable function u ∈ C2(D), u : D → R is called A (z)−harmonic
in the domain D, if everywhere in D function u(z) satisfies differential equation (4).
The class of A (z)−harmonic functions in the domain D is denoted by hA (D) .

Theorem 5. (about mean value, see [5])). Let D is convex domain. If the function
u (z) is A (z)−harmonic in the lemniscate L(z,R) = {ξ ∈ D : |ψ(z, ξ)| < R} ⊂ D,
then for any r < R the following mean values hold

u(z) =
1

2πr

∮
|ψ(z,ξ)|=r

u(ξ)
∣∣dξ + A(ξ)dξ̄

∣∣, (5)

u(z) =
1

πr2

∫∫
|ψ(z,ξ)|≤r

u(ξ)
(
1− |A(ξ)|2

) dξ ∧ dξ̄
2i

, (6)

where ψ(z, ξ) = z − ξ +
∫

γ(z,ξ)

Ā (τ) dτ .

For A (z)−harmonic functions, the following Dirichlet problem is naturally con-
sidered: Dirichlet problem. A bounded domain is G ⊂ D given and a continuous
function is given ϕ (ξ) on the boundary ∂G. It is required to find a A (z)−function
u (z) ∈ hA (G)

⋂
C
(
Ḡ
)

: u|∂G = ϕ that is harmonic in the domain G and continuous
on the closure G. The well-known classical Poisson formula is the simplest and also
the most important example of solving the Dirichlet problem in the class of harmonic
functions. In the case where the domain G is a lemniscate G = L(a,R), the following
analogue takes place

Theorem 6. (an analogue of the Poisson formula for A (z)−harmonic functions see
[10]). If the function is ϕ(ξ) continuous on the boundary of the lemniscate L(a,R) ⊂
D, then the function

u(z) =
1

2πR

∮
|ψ(a,ξ)|=R

ϕ(ξ)
R2 − |ψ(a, z)|2

|ψ(ξ, z)|2
∣∣dξ + A(ξ)dξ̄

∣∣ (7)

is a solution of the Dirichlet problem in L(a,R). For continuous functions, the fol-
lowing harmonicity criteria hold. Let’s assume that a D−convex domain.

Theorem 7. (see [5]). For a function, the u (z) ∈ C (D) following statements are
equivalent:

1) u ∈ hA(D);
2) For any z ∈ D and L(z, r) ⊂⊂ D the following equality holds

u (z) =
1

2πr

∫
|ψ(ξ,z)|=r

u (ξ)
∣∣dξ + A (ξ) dξ̄

∣∣ ;
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3) For any z ∈ D and L(z, r) ⊂⊂ D the following equality holds

u (z) =
1

πr2

∫∫
|ψ(ξ,z)|≤r

u (ξ) dµ. (8)

Corollary 1. (extremum principle). If the function u ∈ hA(D) reaches extremum
inside the domain of domain G, then u ≡ const.

Corollary 2. Dirichlet problem

∆Au (z) = 0, z ∈ G, u ∈ hA (G)
⋂

C
(
Ḡ
)
, u|∂G = ϕ, ϕ ∈ C (∂G)

has a unique solution.

Theorem 8. (analogue of the Harnac’s see [7]) . A monotone sequence of harmonic
functions uj ∈ hA(D) either uniformly (inside D) converges to infinity, or uniformly
converges to some harmonic function u ∈ hA(D).

2 Class of A (z)−subharmonic functions

In this section, we have devoted to the study of some properties of subharmonic
functions.

Definition 2. A function u : D → [−∞;∞) is said to be A (z)−subharmonic in a
convex domain G ⊂ C if it satisfies the following two conditions:

1) u(z) is upper semicontinuous, i.e. ∀z0 ∈ G there is an inequality

lim
w→z0

u(w) ≤ u(z0), (9)

(It follows that the function is bounded from above on any compact subset of the
domain G);

2) for each point ∀z0 ∈ G there is a number r(z0) > 0 such that r < r(z0) the
inequality holds for all

u(z0) ≤ 1

2πr

∮
|ψ(ξ,z0)|=r

u (ξ)
∣∣dξ + A(ξ)dξ̄

∣∣, (10)

where is the function

ψ (ξ, z0) = ξ − z0 +

∫
γ(ξ,z0)

Ā (τ) dτ

for a convex domain G ⊂ C exists and has a unique zero at a point z0 (see [9]).
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A function u : D → [−∞;∞) is called A (z)−subharmonic in an arbitrary do-
main D, if it is A (z)−subharmonic in any convex subdomain G ⊂ D. The class of
A (z)−subharmonic functions in the domain D is denoted by shA (D) . In what fol-
lows, for convenience, the trivial function u ≡ −∞ will also be included in shA (D) .
Let us present some simple properties A (z)−of subharmonic functions. The following
4 properties are directly obtained from the definition.

1) a linear combination of A (z)−subharmonic functions with non-negative coef-
ficients is a A (z)−subharmonic function:

uj ∈ shA (D) , cj ≥ 0 (j = 1, 2, ...,m)⇒ c1u1 + ...+ cmum ∈ shA (D) ;

2) the maximum of a finite number of A (z)−subharmonic functions is also A (z)−
subharmonic:

uj ∈ shA (D) , (j = 1, 2, ...,m)⇒ u (z) := max {u1 (z) , ..., um (z)} ∈ shA (D) ;

3) the limit of a monotonically decreasing sequence A (z)−of subharmonic func-
tions is A (z)−subharmonic:

uj ∈ shA (D) , uj (z) ≥ uj+1 (z)⇒ u (z) := lim
j→∞

uj (z) ∈ shA (D) ;

4) a uniformly descending sequence of A (z)−subharmonic functions converges to
a subharmonic function:

uj ∈ shA (D) , uj ⇒ u⇒ u ∈ shA (D) ;

Let us prove further properties
5) (maximum principle, see [6]). Let be u ∈ shA (D) and at some point z0 ∈ D it

reaches its maximum, then u|D ≡ const.

Proof. Let ∃z0 ∈ D : u (z0) = sup
z∈D
{u (z)} . Consider the set

M := {z ∈ D : u (z) = u (z0)} .

Then z0 ∈Mand from the semicontinuity u(z) in D a bunch of Mclosed in D. From
the definition of a A (z)−subharmonic function for an arbitrary fixed w ∈ M , we
have

u (z0) = u(w) ≤ 1

2πr

∮
|ψ(ξ,w)|=r

u (ξ)
∣∣dξ + A(ξ)dξ̄

∣∣ ≤ u (z0) ,∀r ≤ r (z0) .

Hence it follows that u|∂L(w,r) ≡ u (z0) , because if ∃ξ ∈ ∂L (p, r) : u (ξ) < u (z0) ,
then from semi-continuity u (z) < u (z0) in some non-empty open piece λ ⊂ ∂L(w, r),
which would contradict the equality u(w) = u(z0). And so

u|∂L(w,r) ≡ u (z0) ,∀0 < r ≤ r
(
z0
)

and u|L(w,r) ≡ u (z0) . Hence, w ∈ M is an interior point and M is an open set in D.
Mean M = D. Property 5 is proved.
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6) if for functions v ∈ shA (D) , u ∈ hA (D) their narrowing on the border of
the domain G ⊂⊂ D satisfy the inequality v|∂G ≤ u|∂G, then the inequality holds
v|G ≤ u|G. The proof simply follows from the maximum principle applied to the
difference u− v. 7) if at the border ∂D given a continuous function ϕ ∈ C (∂D) ,then
in the class

U = {v ∈ shA (D) ∩ C(D) : u|∂D ≡ ϕ}

A (z)−harmonic function u : u|∂D = ϕ satisfies the maximum condition, i.e.

u (z) ≥ v (z) ,∀z ∈ D, ∀v ∈ U.

8) For A (z)−a subharmonic function v ∈ shA (D) , where D ⊂ C is a convex
domain, the second condition (10), which was originally required for sufficiently small
r < r (z0) , is satisfied for all r : L(z0, r) ⊂⊂ D.

Proof. The existence of a decreasing sequence follows ϕj ∈ C (∂L (z0, r)) : ϕj ↓
v|∂L(z0,r)

from the upper semicontinuity at the boundary of the lemniscate ∂L (z0, r).
Let us construct A (z)− harmonic function uj in the lemniscate L(z0, r) with the
boundary value uj|∂L(z0,r)

= ϕj. Since ϕj ≥ v|∂L(z0,r)
, then according to property 6

implies that
uj|L(z0,r)

≥ v|L(z0,r)
.

We have

v (z0) ≤ uj (z0) =
1

2πr

∮
|ψ(z0,ξ)|=r

uj (ξ)
∣∣dξ + A (ξ) dξ̄

∣∣ =
1

2πr

∮
|ψ(z0,ξ)|=r

ϕj (ξ)
∣∣dξ + A (ξ) dξ̄

∣∣
which j →∞ gives us

v (z0) ≤ 1

2πr

∮
|ψ(z0,ξ)|=r

v (ξ)
∣∣dξ + A (ξ) dξ̄

∣∣.
The preposition is proved.

If
{u1(z), u2(z), ..., uN(z)} ⊂ shA (D)

is a finite family of A (z)−subharmonic in D ⊂ C functions, then

u(z) = sup{u1(z), u2(z), ..., uN(z)}

is a A (z)−subharmonic function. The situation is different when we consider an
arbitrary family of {uα(z)}, α ∈ Λ subharmonic functions. In this case, it is necessary
to require u(z) = sup

α∈Λ
{uα(z)} was locally bounded, which is the same {uα(z)} locally

uniformly bounded.
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Theorem 9. Let {uα(z)}, α ∈ Λ, be an arbitrary locally uniformly bounded family
of A (z)−subharmonic functions and u(z) = sup

α∈Λ
{uα(z)}. Then the regularization

u∗(z) := lim
w→z

u (w)

is an A (z)−subharmonic function in D. Further, if {uj(z)} is a sequence of locally
uniformly bounded A (z)−subharmonic functions and

u(z) = lim
j→∞

uj(z),

then u∗(z) is an A (z)−subharmonic function.

Proof. We fix an arbitrary convex domain G ⊂ D and, as usual, construct a function
ψ (z, ξ) inG. For each function uα(z), α ∈ Λ, from the definition of aA (z)−subharmonic
function we have

uα(z) ≤ 1

2πr

∫
|ψ(z,ξ)|=r

uα(ξ)
∣∣dξ + A (ξ) dξ̄

∣∣ =




ψ (a, ξ) = ψ (a, z) + ψ (z, ξ)

ψ (z) := ψ (a, z)

ξ = z + ψ−1 (z, ξ)

=


=

1

2πr

∫
|ψ(a,z)|=r

uα
(
z + ψ−1 (z, ξ)

) ∣∣dξ + A (ξ) dξ̄
∣∣,

where r < r0 : L (z, r0) ⊂⊂ G.Hence, u(z) ≤ 1
2πr

∫
|ψ(a,z)|=r

uα (z + ψ−1 (z, ξ))
∣∣dξ + A (ξ) dξ̄

∣∣.
Let us write this inequality for any w ∈ L(z, δ), where δ > 0 such that r + δ < r0:

u(w) ≤ 1

2πr

∫
|ψ(a,z)|=r

uα
(
w + ψ−1 (z, ξ)

) ∣∣dξ + A (ξ) dξ̄
∣∣.

If we take a regularization on both sides, then

lim
w→z

u (z) ≤ 1

2πr

∫
|ψ(a,z)|=r

lim
w→z

uα
(
w + ψ−1 (z, ξ)

) ∣∣dξ + A (ξ) dξ̄
∣∣.

And we’ll get that

u∗(z) ≤ 1

2πr

∫
|ψ(a,z)|=r

u∗
(
z + ψ−1 (z, ξ)

) ∣∣dξ + A (ξ) dξ̄
∣∣ =

1

2πr

∫
|ψ(z,ξ)|=r

u∗(ξ)
∣∣dξ + A (ξ) dξ̄

∣∣,
which proves the A (z)−subharmonicity u∗ in G and since G ⊂ D−arbitrary, then
u∗ is A (z)−subharmonic in D. The second part of the Theorem, for a sequence of
locally uniformly bounded A (z)−subharmonic functions, the proof is similar to the
previous one. The theorem is proved.
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3 Perron method

Let us be given a bounded domain D =

{
z ∈ C : |A (z)| ≤ 1, sup

z
|A (z)| ≤ 1

}
⊂ C

and G ⊂⊂ D a function ϕ ∈ C (∂G) . The classical internal Dirichlet problem is that
find function ω ∈ hA (D) ∩ C (D) , ω|∂D = ϕ|∂D . From the maximum principle for
A (z)−harmonic functions, it immediately follows that if a solution to the Dirichlet
problem exists, then it is unique. In one particular case, when the domainL (z0, r) ⊂⊂
G lemniscate, in the section 1 the solution was constructed constructively, explicitly
by the Poisson integral. To solve the Dirichlet problem in a convex domain G ⊂ C
we use the well-known Perron method. We consider it a very convenient apparatus in
potential theory and in the theory of harmonic functions; perhaps the method is very
useful in other boundary value problems of elliptic equations. For a given continuous
function, ϕ ∈ C (∂G) we set

UA (ϕ,G) =

{
u ∈ shA (G) : lim

z→ξ∈∂D
u (ξ) ≤ ϕ (ξ)

}
, ω (z) := sup {u (z) : u ∈ UA (ϕ,G)} .

Theorem 10. Function ω (z) ∈ hA (G) and it coincides with its regularization i.e.

ω (z) = ω∗ (z) ,∀z ∈ G.

Proof. As ϕ ∈ C (∂G) and the norm ‖ϕ‖∂G is bounded by a constantM > 0, then by
the maximum principle, each function u ∈ UA (ϕ,G) bounded from above u (z) ≤M
therefore, ω∗|G ≤ M. According to an analog of the Choquet Lemma, there exists a
countable family of functions

uj ∈ UA (ϕ,G) : u∗ (z) = (sup {uj (z) : j ∈ N})∗ = ω∗ (z) .

The sequence ωj (z) = max {u1 (z) , u2 (z) , ..., uj (z)} is an increasing sequence of
A−subharmonic functions, and ωj ∈ UA (ϕ,G), ωj+1 (z) ≥ ωj (z),ωj (z) →

j→∞
ω (z).

We fix L (z0, r) ⊂⊂ G and A (z)−harmonize in L (z0, r), i.e.

˜
ω j (z) =


∫

|ψ(ξ,z0)|=r
wj (ξ) R2−|ψ(z,z0)|2

|ψ(ξ,z)|2
∣∣dξ + A (ξ) dξ̄

∣∣, z ∈ L (z0, r)

ωj (z) , z ∈ G\L (z0, r)
.

Then we find
˜
ω j ∈ shA (G) ∩ hA (L (z0, r))

such that it follows that

˜
ω j (z) ≥ ωj (z) , ∀z ∈ L (z0, r)

and
˜
ω j (z) ↑ ωj (z) ,∀z ∈ G\L (z0, r) .
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Since, in addition u (z) ≤ M, then by analogy with Harnack’s theorem (see theorem
8) u ∈ hA (L (z0, r)). Therefore u ∈ hA (G) , because L (z0, r) ⊂⊂ G−arbitrary. The
obvious inequality u (z) ≤ ω (z) also ω|G = ω∗|G implies

ω∗ (z) = u∗ (z) ≤ ω (z) ≤ ω∗ (z) ,∀z ∈ G.

The theorem is proved .

Function coincidence ω (z) at the boundary ∂G with a given function ϕ (ξ) de-
pends on the property ∂G,on the regularity of the domain G.

Definition 3. We say that a domain G ⊂ C has a global A (z)−barrier at ξ0 ∈ ∂G
if it exists b ∈ shA (G) such that

lim
z→ξ0
z∈G

b (z) = 0, sup {b (z) : z ∈ G\L (ξ0, r)} < 0,∀r > 0 : L (ξ0, r) ⊂ G.

Domain G ⊂ C called has local A (z)−barrier at a point ξ0 ∈ ∂G if there exists a
lemniscate L (ξ0, r) ⊂ D such that the intersection L (ξ0, r) ∩G has global barrier.

Proposition 1. If the domain G has a local barrier at the point ξ0 ∈ ∂G then the
domain G has a A (z)−global barrier at that point.

Proof. ∃L (ξ0, R) ⊂ D such that G ∩ L (ξ0, R) has a global A (z)−barrier at ξ0, i.e.
∃a ∈ shA (G ∩ L (ξ0, r)) : lim

z→ξ0
z∈G∩L(ξ0,r)

a (z) = 0 and

sup {a (z) : z ∈ G, r < |ψ (ξ0, z)| < R} < 0,∀r < R.

We fix δ ∈ (0; r) and consider following A (z)−subharmonic function in D: l (z) =
1
2
| sup {b (z) : z ∈ G, δ < |ψ (ξ0, z)| < R}| ln

|ψ(z,ξ0)|
R

ln R
δ

. Then l|∂L(ξ0,δ)
> a|∂L(ξ0,δ)

. As

lim
z→ξ0

z∈G∩L(ξ0,r)

a (z) = 0

and l (ξ0) = −∞, then there exists 0 < ε < δ such that l|∂L(ξ0,ε)
< a|∂L(ξ0,ε)

. Then it is

easy to check that the function b (z) =


a (z) , z ∈ G ∩ L (ξ0, δ)

max {a (z) , l (z)} , z ∈ G ∩ {L (ξ0, ε) \L (ξ0, δ)}
l (z) , z ∈ G\L (ξ0, ε)

is A (z)−barrier at the point ξ0. The preposition is proved .

It follows that the local A (z)−barrier and the global A (z)−barrier are equivalent.

Theorem 11. If the domain G has a point ξ0 ∈ ∂G A (z)−barrier, then

lim
z→ξ0
z∈G

ω (z) = ϕ (ξ0) .
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Proof. Set M = ‖ϕ‖∂D and fix ε > 0.From continuity ϕ ∈ C (∂G), there exists
δ > 0 : |ϕ (ξ)− ϕ (ξ0)| < ε, ξ ∈ ∂G ∩ L (ξ0, δ) . Since at the point ξ0 ∈ ∂G there is a
A−barrier, then there b ∈ shA (G) is one such that

lim
z→ξ0
z∈G

b (z) = 0, sup {b (z) : z ∈ G\L (ξ0, ε)} = λ (ε) < 0.

Let us estimate the boundary values of the function

vε (z) = ϕ (ξ0)− ε− b (z)

λ (ε)
(M + ϕ (ξ0)) .

If ξ ∈ ∂G ∩ L (ξ0, δ) , then

lim
z→ξ
z∈D

vε (z) ≤ −ε+ ϕ (ξ0) ≤ ϕ (ξ) .

If ξ ∈ ∂G\L (ξ0, δ) , then

lim
z→ξ
z∈G

vε (z) ≤ −ε+ ϕ (ξ0)−M − ϕ (ξ0) ≤ ϕ (ξ) .

Hence, lim
z→ξ
z∈G

vε (z) ≤ ϕ (ξ) , ∀ξ ∈ ∂G and vε ∈ UA (ϕ,G) . Hence vε (z) ≤ ω (z) and

lim
z→ξ0
z∈G

ω (z) ≥ lim
z→ξ0
z∈G

vε (z) = −ε+ ϕ (ξ0) ,

which at ε→ 0+ gives
lim
z→ξ0
z∈G

ω (z) ≥ ϕ (ξ0) . (11)

To prove the reverse inequality, we fix u ∈ UA (ϕ,G) and consider the sum

u (z) + wε (z) ∈ shA (G) ,

where vε (z) = −ϕ (ξ0)− ε− b(z)
λ(ε)

(M − ϕ (ξ0)) .
We have

lim
z→ξ
z∈G

[u (z) + wε (z)] ≤ lim
z→ξ
z∈G

u (z) + lim
z→ξ
z∈G

wε (z) .

If ξ ∈ ∂G ∩ L (ξ0, δ) , now then

lim
z→ξ
z∈G

vε (z) ≤ −ε− ϕ (ξ0) ≤ −ϕ (ξ) .

If ξ ∈ ∂G\L (ξ0, δ) , then

lim
z→ξ
z∈G

vε (z) ≤ −ε− ϕ (ξ0)− (M − ϕ (ξ0)) ≤ −ε−M ≤ −ϕ (ξ) .
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From here
u+ wε|∂G ≤ 0

and according to the principle of maximum

u+ wε|G ≤ 0,

i.e.
u|G ≤ −wε|G

. Since it is u ∈ UA (ϕ,G)−arbitrary, then

ω|G ≤ −wε|G.

Hence, lim
z→ξ0
z∈G

ω (z) ≤ lim
z→ξ0
z∈G

[−wε (z)] = ε+ ϕ (ξ0) and when ε→ 0+ we get

lim
z→ξ0
z∈G

ω (z) ≤ ϕ (ξ0) . (12)

Combining this with (10) we arrive at lim
z→ξ0
z∈G

ω (z) = ϕ (ξ0) . The theorem is proved.

Corollary 3. . If the domain G ⊂ D has a A (z)−barrier at all boundary points
ξ ∈ ∂G then the Dirichlet problem of the equation{

∆Au = 0
u|∂G = ϕ (ξ)

always (for any function ∀ϕ ∈ C (∂D)) has a solution u ∈ hA (G) ∩ C
(
Ḡ
)
, and this

solution is unique.

Definition 4. A domain G ⊂ D is called A (z)−regular domain if it contains a
negative A (z)−subharmonic function ρ ∈ shA (G) such that

ρ|G < 0, lim
z→ξ∈∂G

ρ (z) = 0.

Here the last condition means that for any number the c < 0 set {z ∈ G : ρ (z) ≤ c}
is a compact set in D.

The following theorem shows that there is a close relationship betweenA (z)−regularity
and A (z)−barrier in domains.

Theorem 12. The region G has a barrier at every point ξ ∈ ∂Gif and only if domain
G is A (z)−regular.
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Proof. Let the domain G have a barrier at each point ξ ∈ ∂G. We fix a point w ∈ G
and a function 1

2π
ln |ψ (ξ, w)|, ξ ∈ ∂G. According to the Dirichlet problem ∆Au (z) =

0, u|∂G = 1
2π

ln |ψ (ξ, w)| has a unique solution

uw ∈ hA (G) ∩ C
(
G
)
.

Then 1
2π

ln |ψ (z, w)|−uw (z) is the defining, A (z)−subharmonic exhaustion function
of the domain G, i.e.

1

2π
ln |ψ (ξ, z)| − uz (ξ) ∈ shA (G)

and

G =

{
z ∈ D :

1

2π
ln |ψ (ξ, z)| − uz (ξ) < 0

}
.

Let us G is an A (z)−regular and ρ ∈ shA (G) , ρ|G < 0, lim
z→ξ∈∂G

ρ (z) = 0. We fix

ξ0 ∈ ∂G and put ϕ (ξ) = |ϕ (ξ, ξ0)|2, ξ ∈ ∂G. Let’s build a function ω (z). By
Theorem 10, it is harmonic in G. Since the function v (z) = |ψ (z, ξ0)|2, z ∈ G belongs
to the class UA (ϕ,D) , then ω (z) ≥ |ψ (z, ξ0)|2. Therefore, the function b (z) = −ω (z)
satisfies the sup {b (z) : z ∈ G\L (ξ0, r)} < 0,∀r > 0 : L (ξ0, r) ⊂ G barrier function
condition. It remains to prove the condition

lim
z→ξ0
z∈G

b (z) = 0.

Fixing the lemniscate L = L (ξ0, r) ⊂ D and compact K ⊂ ∂L ∩ G. Then ρ0 :=
max
K

ρ (z) < 0. Let M := max
∂G
|ψ (z, ξ0)|2 and

φ (ξ) :=

{
M, z ∈ (∂L ∩G) \K
0, z ∈ (∂L ∩G) ∪K

We take the Poisson integral

u (z) :=

∫
∂L

φ (ξ) Π (ξ, z)
∣∣dξ + A (ξ) dξ̄

∣∣,∀z ∈ L.
Then u ∈ hA (L) , 0 ≤ u (z) ≤M and

u (ξ0) =
1

2πr

∫
∂L

φ (ξ)
∣∣dξ + A (ξ) dξ̄

∣∣ =
1

2πr

∫
K′

φ (ξ)
∣∣dξ + A (ξ) dξ̄

∣∣ =
Mµ (K ′)

2πr
,

where K ′ = (∂L ∩G) \K, and µ (K ′) :=
∫
K′

∣∣dξ + A (ξ) dξ̄
∣∣ is µ measure of the

set K ′. In addition, the boundary function φ (ξ) ≡ M on the open piece K ′ =
(∂L ∩G) \K. Therefore, u|K′ ≡ M. We fix w ∈ UA (ϕ,G) and take the auxiliary
A (z)−subharmonic into L ∩ G the function f (z) = −r2 + ρ(z)

|ρ0|M − u (z) . Let us
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show that lim
z→ξ

z∈L∩G

[w (z) + f (z)] ≤ 0, ∀ξ ∈ ∂ (L ∩G) , from which it follows that

w (z) + f (z) ≤ 0 in L ∩G. At ξ ∈ L̄ ∩ ∂G we have

lim
z→ξ

z∈L∩G

[w (z) + f (z)] ≤ lim
z→ξ

z∈L∩G

w (z)+ lim
z→ξ

z∈L∩G

f (z) ≤ φ (ξ)−r2−u (ξ) = |ψ (ξ, ξ0)|−r2 ≤ 0.

When ξ ∈ K ′
, so

lim
z→ξ

z∈L∩G

w (z) + lim
z→ξ

z∈L∩G

f (z) ≤M + lim
z→ξ

z∈L∩G

[−u (z)] = M −M = 0

and finally, if ξ ∈ K, then

lim
z→ξ

z∈L∩G

w (z) + lim
z→ξ

z∈L∩G

f (z) ≤M + lim
z→ξ

z∈L∩G

ρ (z)

|ρ0|
M = M −M = 0.

Thus, w (z) + f (z) ≤ 0 in L ∩ G and since w ∈ UA (ϕ,G) n is arbitrary, then
ω (z) + f (z) ≤ 0 on L ∩G. Hence it follows that

lim
z→ξ
z∈G

ω (z) ≤ − lim
z→ξ
z∈G

f (z) ≤ −
(
−r2 − u (ξ0)

)
= r2 +

Mµ (K ′)

2πr
.

Choosing piece K ′ = (∂L ∩G) \K so small that

Mµ (K ′)

2πr
< r2.

Then
0 ≤ lim

z→ξ
z∈G

ω (z) ≤ 2r2

and for r → +0 we get
lim
z→ξ
z∈G

ω (z) = 0.

The theorem is proved .
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