On time-optimal control problem associated with parabolic equation

Farrukh Dekhkonov
National University of Uzbekistan, f.n.dehqonov@mail.ru
ON TIME-OPTIMAL CONTROL PROBLEM ASSOCIATED WITH PARABOLIC EQUATION

DEKHKONOV F.N.
National University of Uzbekistan, Tashkent, Uzbekistan
E-mail: f.n.dehqonov@mail.ru

Abstract

The boundary control problem for heat equation in a right rectangle domain is considered. The control parameter is equal to the temperature on some part of the border of the considered domain. The estimate of a minimal time for achieving the given average temperature over some subdomain is found.

Keywords: Minimal time, integral equation, boundary control, initial-boundary problem, admissible control.

Mathematics Subject Classification (2010): 35K05, 35K15.

Introduction

Consider the following mathematical model of the heat conduction process along the domain \(\Omega = \{(x, y) \in \mathbb{R}^2 : 0 < x < a, 0 < y < b\} \):

\[
 u_t = u_{xx} + u_{yy}, \quad (x, y) \in \Omega, \quad t > 0,
\]

with boundary conditions

\[
 u\mid_{x=0} = \varphi(y)\mu(t), \quad u\mid_{x=a} = 0, \quad 0 < x < a, \quad t > 0,
\]

\[
 u\mid_{y=0} = 0, \quad u\mid_{y=b} = 0, \quad 0 < y < b, \quad t > 0,
\]

and initial condition

\[
 u(x, y, 0) = 0, \quad 0 \leq x \leq a, \quad 0 \leq y \leq b.
\]

Let \(M > 0 \) be some given constant. We say that the function \(\mu(t) \) is an admissible control if this function is differentiable on the half-line \(t \geq 0 \) and satisfies the following constraints

\[
 \mu(0) = 0, \quad |\mu(t)| \leq M, \quad t > 0.
\]

Assume that the function \(\varphi(y) \in W^2_2[0, b] \) is smooth and satisfies conditions

\[
 \varphi(0) = \varphi(b) = 0, \quad \varphi_m \geq 0, \quad 0 \leq y \leq b,
\]

where

\[
 \varphi_m = \frac{2}{b} \int_{0}^{b} \varphi(y) \sin \frac{m\pi y}{b} \, dy.
\]
Set of functions which satisfies conditions (6) is not empty. For example:

\[\varphi(y) = y(b-y) = \sum_{m=1}^{\infty} \varphi_m \sin \frac{m\pi y}{b}, \quad 0 \leq y \leq b. \]

In the present work we consider the following problem.

Problem A. Given constants \(\alpha, \beta \geq 1 \) and \(\theta > 0 \) Problem A consists in looking for the minimal value of \(T > 0 \) so that for \(t > 0 \) the solution \(u(x, y, t) \) of the initial-boundary value problem (1)-(4) with some admissible control \(\mu(t) \) exists and for all \(t \geq T \) satisfies the equation

\[\int_{0}^{b/a} \int_{0}^{a/\beta} u(x, y, t) \, dx \, dy = \theta, \quad t \geq T. \]

(8)

We recall that the time-optimal control problem for partial differential equations of parabolic type was first concerned in [6] and [9]. More recent results concerned with this problem were established in [1]-[5], [7], [8], [15], [16]. Detailed information on the problems of optimal control for distributed parameter systems is given in the monographs [10] and [14].

General numerical optimization and optimal boundary control have been studied in a great number of publications such as [13].

To formulate the main result we use some data related to the conditions of the boundary-initial problem (1)-(4).

Set

\[\rho_{nm} = \frac{8b}{a \pi} \varphi_m \sin^2 \frac{n\pi}{2} \sin^2 \frac{m\pi}{2\alpha}, \quad n, m = 1, 2, 3, ... \]

(9)

Theorem 0.1. Let

\[0 < \theta < \rho_{11} M a^2 b^2 / \pi^2 (a^2 + b^2). \]

Set

\[T_0 = -\frac{a^2 b^2}{\pi^2 (a^2 + b^2)} \ln \left(1 - \frac{\theta^2 (a^2 + b^2)}{\rho_{11} M a^2 b^2} \right). \]

Then a solution \(T_{\text{min}} \) of the Problem A exists and the estimate \(T_{\text{min}} \leq T_0 \) is valid.

1 The main integral equation

Let \(B \) be the Banach space and \(T > 0 \). Denote by \(C([0, T] \to B) \) the Banach space of all continuous maps \(u : [0, T] \to B \) with the norm

\[\|u\| = \max_{0 \leq t \leq T} \|u(t)\|. \]

By symbol \(\widetilde{W}_2^1(\Omega) \) we denote the subspace of the Sobolev space \(W_2^1(\Omega) \) formed by functions whose trace is equal to \(\partial \Omega \) zero. Note that since \(\widetilde{W}_2^1(\Omega) \) is closed, the sum of a series of functions from \(\widetilde{W}_2^1(\Omega) \) converging in metric \(W_2^1(\Omega) \) also belongs to \(\widetilde{W}_2^1(\Omega) \).
Definition 1.1. By the solution of problem (1)-(4) we mean function \(u(x, y, t) \), represented in the form

\[
 u(x, y, t) = \frac{a-x}{a} \varphi(y) \mu(t) - v(x, y, t),
\]

where the function \(v(x, y, t) \) is a generalized solution from \(C([0, T] \to \tilde{W}^1_2(\Omega)) \) of the problem

\[
 v_t(x, y, t) - \Delta v(x, y, t) = -\frac{a-x}{a} \varphi''(y) \mu(t) + \frac{a-x}{a} \varphi(y) \mu'(t),
\]

with boundary conditions

\[
 v(x, y, t) \big|_{\partial\Omega} = 0,
\]

and initial condition

\[
 v(x, y, 0) = 0, \quad 0 \leq x \leq a, \quad 0 \leq y \leq b.
\]

Consequently,

\[
 v(x, y, t) = \int_0^t \sum_{n,m=1}^{\infty} e^{-\lambda_{nm}(t-s)} \frac{\varphi_m}{n} \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b} \left(\frac{2\pi m^2}{b^2} \mu(s) + \frac{2}{\pi} \mu'(s) \right) ds,
\]

where \(\lambda_{nm} = (n\pi/a)^2 + (m\pi/b)^2 \), \(n, m = 1, 2, ... \) (see, e.g. [17], [18]).

Note that the class \(C([0, T] \to \tilde{W}^1_2(\Omega)) \) is a subset of the class \(W^1_2(\Omega) \) considered in the monograph [11] in order to define a problem with homogeneous boundary conditions. Thus, the generalized solution introduced above is also a generalized solution in the sense of monograph [11]. However, unlike a solution from the class \(W^1_2(\Omega) \), which is guaranteed to have a trace of almost all \(t \in [0, T] \), a solution from the class \(C([0, T] \to \tilde{W}^1_2(\Omega)) \) continuously depends on \(t \in [0, T] \) in the metric \(L^2_2(\Omega) \).

Proposition 1.1. Let \(\mu(t) \) be a smooth function on the half-line \(t \geq 0 \) and \(\varphi \in W^2_2[0, b] \). Then the function

\[
 u(x, y, t) = \int_0^t \mu(s) \sum_{n,m=1}^{\infty} \frac{2\pi n \varphi_m}{a^2} e^{-\lambda_{nm}(t-s)} \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b} ds,
\]

is the solution of the initial-boundary value problem (1)-(4).

Proof. A similar proof is given in the case [12]. We rewrite the solution to the problem in the form

\[
 u(x, y, t) = \frac{a-x}{a} \varphi(y) \mu(t) - \\
 - \int_0^t \sum_{n,m=1}^{\infty} e^{-\lambda_{nm}(t-s)} \frac{\varphi_m}{n} \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b} \left(\frac{2\pi m^2}{b^2} \mu(s) + \frac{2}{\pi} \mu'(s) \right) ds.
\]
We show that function $v(x, y, t)$ belongs to class $C([0, T] \rightarrow \tilde{W}^1_2(\Omega))$. For this, it is enough to prove that the gradient of this function, taken in $(x, y) \in \Omega$, continuously depends on $t \in [0, T]$ in the norm of the space $L_2(\Omega)$. According to Parseval’s equality, the norm of this gradient is

$$\|\nabla v\|_{L^2(\Omega)}^2 = \sum_{n,m=1}^{\infty} \frac{|\varphi_m|^2}{n^2} \lambda_{nm} b_{nm}^2(t)$$

where

$$b_{nm}(t) = \int_0^t e^{-\lambda_{nm}(t-s)} \left(\frac{2\pi m^2}{b^2} \mu(s) + \frac{2}{\pi} \mu'(s) \right) ds.$$

From the Cauchy-Bunyakovsky inequality, we obtain the following estimate

$$b_{nm}(t) \leq C_1 \sqrt{\lambda_{nm}} + C_2 \frac{m^2}{\lambda_{nm}} \leq C_3 \frac{m}{\sqrt{\lambda_{nm}}}, \ t \geq 0.$$

From (6) and (7), we write

$$\varphi_m = \frac{2}{b} \int_0^b \varphi(y) \sin \frac{m\pi y}{b} dy = -\frac{2}{b} \varphi(y) \frac{b}{m\pi} \cos \frac{m\pi y}{b} \bigg|_{y=0} +$$

$$+ \frac{2}{m\pi} \int_0^b \varphi'(y) \cos \frac{m\pi y}{b} dy = \frac{2}{m\pi} \int_0^b \varphi'(y) \cos \frac{m\pi y}{b} dy = \frac{b}{m\pi} \varphi'_m. \quad (11)$$

Consequently,

$$\|\nabla v\|_{L^2(\Omega)}^2 \leq C_3 \sum_{n,m=1}^{\infty} \frac{m^2 |\varphi_m|^2}{n^2} \leq C_3 \frac{\pi^2 b^2}{6} \sum_{m=1}^{\infty} m^2 \frac{|\varphi'_m|^2}{m^2} = C \|\varphi'\|_{L^2[0,b]}^2.$$

It is easy to see that with the equality (10) we can write the condition (8) of problem as the following

$$\theta = \frac{b/\alpha}{a/\beta} \int_0^t \int_0^b u(x, y, t) \ dx \ dy =$$

$$= \int_0^t \mu(s) ds \int_0^b \int_0^a \sum_{n,m=1}^{\infty} \frac{2\pi n}{a^2} \varphi_m e^{-\lambda_{nm}(t-s)} \ sin \frac{n\pi x}{a} \ sin \frac{m\pi y}{b} dx \ dy =$$

$$= \int_0^t \mu(s) \sum_{n,m=1}^{\infty} \frac{8b \varphi_m}{a m \pi} e^{-\lambda_{nm}(t-s)} \ sin^2 \frac{n\pi}{2\beta} \ sin^2 \frac{m\pi}{2\alpha} ds. \quad (12)$$
Set
\[B(t) = \sum_{n,m=1}^{\infty} \rho_{nm} e^{-\lambda_{nm}t}, \]
(13)
where \(\rho_{nm} \) defined by (9).

Then we get main integral equation
\[\int_0^t B(t-s)\mu(s)ds = \theta, \ t > 0. \]
(14)

Proposition 1.2. For \(B(t) \) defined by (13) the following estimate
\[0 < B(t) \leq C \sqrt{t}, \ 0 < t \leq 1, \]
(15)
is valid.

Proof. From (9) and (11), we may write
\[0 < \rho_{nm} \leq C_0 \varphi'_m \frac{m^2}{e^{s^2 / a^2}}. \]
Hence, using the definition (13) we get
\[0 < B(t) \leq C_0 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \varphi'_m \frac{m^2}{e^{s^2 / a^2}}. \]
(16)

Set
\[K(t) = \sum_{m=1}^{\infty} \varphi'_m \frac{e^{-s^2 / a^2}}{t} \]
with \(t > 0 \).

This function for any \(T > 0 \) and \(0 \leq t \leq T \) satisfies inequalities
\[0 < K(T) \leq K(t) \leq K(0). \]
(17)

For any \(p > 0 \) consider the following relations:
\[\sum_{n=1}^{\infty} e^{-pn^2} = \sum_{n=1}^{\infty} \int_{s=1}^{n+1} e^{-p(s)^2} ds = \int_{s=1}^{\infty} e^{-p(s)^2} ds = \int_{s=1}^{\infty} e^{-ps^2} e^{p(s^2-|s|^2)} ds, \]
where \(|s|\) is integer part of \(s \).

Note that \(e^{p(s^2-|s|^2)} = e^{p(s^2-|s|^2)+|s|^2} \leq e^{2ps^2} \). Then we obtain
\[\int_{s=1}^{\infty} e^{-ps^2} e^{p(s^2-|s|^2)} ds \leq \int_{s=1}^{\infty} e^{-ps^2+2ps^2} ds = -\int_{s=1}^{\infty} e^{p(s^2-|s|^2)} ds. \]
Hence, for \(0 < p \leq \text{const} \) we get
\[\sum_{n=1}^{\infty} e^{-pn^2} \leq \int_{s=1}^{\infty} e^{-ps^2} e^{p(s^2-|s|^2)} ds \leq e^p \int_{s=1}^{\infty} e^{-ps^2} ds \leq C \sqrt{p}. \]
(18)

Put \(p = \frac{\pi^2 t}{a^2} \). Then required estimate (15) follows from (16)-(18).
2 Estimate of Minimal Time

We consider the following integral equation

\[\int_{0}^{t} B(t-s) \mu(s) ds = \theta, \quad t \geq T, \]

(19)

where

\[B(t) = \sum_{n,m=1}^{\infty} \rho_{nm} e^{-\lambda_{nm} t}. \]

(20)

Proposition 2.1. For the function defined by equality (20) the following estimate

\[B(t) \geq \rho_{11} e^{-[(\pi/a)^2+(\pi/b)^2]t}, \]

(21)

is valid.

Proof. The proof comes from functional series defined by (20) is non-negative.

We introduce a specific heating as

\[Q(t) = \int_{0}^{t} B(t-s) ds = \int_{0}^{t} B(s) ds = \sum_{n,m=1}^{\infty} \frac{\rho_{nm}}{\lambda_{nm}} \left(1 - e^{-\lambda_{nm} t} \right). \]

(22)

The physical meaning of this function is evident: \(Q(t) \) equals the average temperature of \(\Omega \) in case where the heater is acting unit load (see, e.g. [1], [2]).

It is clear that \(Q(0) = 0 \) and \(Q'(t) = B(t) \geq 0 \).

Set

\[Q^* = \lim_{t \to \infty} Q(t) = \int_{0}^{\infty} B(s) ds. \]

(23)

Obviously, the average temperature of \(\Omega \) in the case where the heater is acting with unit load cannot exceed \(Q^* \).

Proposition 2.2. Let

\[0 < \theta < MQ^*. \]

(24)

Then there exist \(T > 0 \) and a real-valued measurable function \(\mu(t) \) so that \(|\mu(t)| \leq M \) and the following equality

\[\int_{0}^{T} B(T-s)\mu(s) ds = \theta \]

(25)

is valid.
Proof. This follows from the properties of the function Q. Indeed, if we set $\mu(t) = M$ then
\[
\int_0^t B(t - s)\mu(s)\,ds = M \int_0^t B(t - s)\,ds = MQ(t),
\]
and because of (25) there exists $T > 0$ so that $MQ(T) = \theta$.

Remark 2.1. It is clear that the value T, which was found in Proposition 2.2, gives a solution to the problem. Namely, T is the root of the equation
\[
Q(T) = \frac{\theta}{M}.
\] (26)

However, the main idea of the present work is to establish an acceptable estimate for the value of the minimal time T (see, e.g. [3]).

Proposition 2.3. Let
\[
0 < \theta < \frac{\rho_{11} M a^2 b^2}{\pi^2 (a^2 + b^2)}.
\] (27)

Then there exists $T > 0$ so that
\[
T < -\frac{a^2 b^2}{\pi^2 (a^2 + b^2)} \ln \left(1 - \frac{\theta \pi^2 (a^2 + b^2)}{\rho_{11} M a^2 b^2}\right)
\] (28)

and the equality (26) is fulfilled.

Proof. For obtaining the required estimate we use Proposition 2.1. We may write
\[
Q(t) = \int_0^t B(s)\,ds \geq \rho_{11} \int_0^t e^{-[(\pi/a)^2 + (\pi/b)^2]s}\,ds =
\]
\[
= \frac{\rho_{11} a^2 b^2}{\pi^2 (a^2 + b^2)} \left(1 - e^{-[(\pi/a)^2 + (\pi/b)^2]t}\right)
\] (29)

Consider the following equation for the defining of T_0:
\[
\frac{\rho_{11} a^2 b^2}{\pi^2 (a^2 + b^2)} \left(1 - e^{-[(\pi/a)^2 + (\pi/b)^2]T_0}\right) = \frac{\theta}{M}.
\] (30)

Then
\[
T_0 = -\frac{a^2 b^2}{\pi^2 (a^2 + b^2)} \ln \left(1 - \frac{\theta \pi^2 (a^2 + b^2)}{\rho_{11} M a^2 b^2}\right).
\]

In accordance with (29) and (30) we may write
\[
0 < \frac{\theta}{M} \leq Q(T_0).
\]

Then obviously there exists T, $0 < T < T_0$, which is a solution to the equation (26).
Proposition 2.4. Let $T > 0$ satisfies the equality (26) and condition (27).
Then there exist $T_1 > T$ and a measurable real-valued function $\mu(t)$ so that $|\mu(t)| \leq M$ and the following equality

$$\int_0^{b/a} \int_0^{a/\beta} u(x,y,t) \, dx \, dy = \theta, \quad T \leq t \leq T_1,$$

is valid.

Proof. According to the following

$$\int_0^t B(t-s)\mu(s)ds = \theta, \quad 0 \leq t \leq T_1, \quad (31)$$

it is enough to prove that there exists solution of the equation

$$\int_0^t B(t-s)\mu(s)ds = f(t), \quad 0 \leq t \leq T_1, \quad (32)$$

where

$$f(t) = \begin{cases} MQ(t), & \text{if } 0 \leq t \leq T, \\ \theta, & \text{if } T < t \leq T_1. \end{cases} \quad (33)$$

The solution (33) is piecewise smooth and, according to equality (26), is continuous.

Set

$$\mu(t) = \begin{cases} M, & \text{if } 0 \leq t \leq T, \\ \mu_1(t), & \text{if } T < t \leq T_1, \end{cases} \quad (34)$$

where $\mu_1(t)$ is the solution of the following integral equation

$$\int_0^T B(t-s)Mds + \int_T^t B(t-s)\mu_1(s)ds = \theta, \quad T \leq t \leq T_1. \quad (35)$$

After differentiating this equation we get

$$B(0)\mu_1(t) + \int_T^t B'(t-s)\mu_1(s)ds = M[B(t-T) - B(t)]. \quad (36)$$

According to (20) $B(0)$ positive and $B(t)$ function is convergence function on given interval. Hence, equation (36) has a unique solution $\mu_1(t)$ for all $t \geq T$, which is continuous function on the half line $t \geq T$. Besides,

$$\mu_1(T) = M \left(1 - \frac{B(T)}{B(0)}\right) < M,$$
and there exists $T_1 > T$ so that

$$|\mu_1(t)| \leq M, \quad T \leq t \leq T_1.$$

It is clear that this function is the unique solution of the equation (35). Hence, the function (34) is piecewise continuous and satisfies equation (32). Consequently, this function $\mu(t)$, which has a jump at the point $t = T$, is the required solution.

The proof of Theorem 0.1 follows now easily from Proposition 2.3 and Proposition 2.4.

The author is grateful to Professor Sh. Alimov for his valuable comments and would like to express thanks to BNUUz’s reviewer for helpful remarks.

References

