•  
  •  
 

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

Abstract

Herein we demonstrate brief investigation results of photoelectrochemical performance of TiO2 nanotube (NT) based photoelectrode incorporated with V2O5 nanopaerticles (NP). Photoelectrodes were composed of TiO2 NTs with a diameter of 100 nm and length of 8µm,that were prepared by electrochemical anodization process at 35V in a formamade based electrolyte. The V2O5 nanoparticles were formed on the walls of the TiO2 NTs by deep coating technique with an average size of ∼5-10 nm. The V2O5NP incorporated TiO2NTs show superior light absorption properties in the visible light region up to ∼600 nm compared to the pristine TiO2NTs. It was found that V2O5 NPs formed vanadium impurities within TiO2 NTs which in its turn ceated acceptor levels of V3+ ions in the TiO2 NTs located deep in the forbidden band gap and provided additional absorption properties of visible light. These impurity levels also provide fast recombination sites of electrons and holes formed by photon excitation.

First Page

121

Last Page

132

References

1. Woodhousea M., Parkinson B. A. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 38, 197–210(2009).

2. Kudo A., Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

3. Wang Z., Li C., Domen K. Recent developments in heterogeneous photocatalysts for solar–driven overall water splitting. Chem. Soc. Rev., 48, 2109–2125 (2019).

4. Miseki Y., Sayama K. Photocatalytic water splitting employing a [Fe(CN)6]-3/4 redox mediator under visible light. Catal. Sci. Technol., 9, 2019–2024, (2019).

5. Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37–38 (1972).

6. Darwent J.R., Mills A. Photo–oxidation of water sensitized by WO3 powder. J. Chem. Soc., Faraday Trans. 78, 359–367 (1982).

7. Pleskov Y.V., Gurevich Y.Y. Semiconductor Photoelectrochemistry, Plenum, New York (1986).

8. Nisar J., Wang B., Araujo C. M. A. Ferreira da Silvac, T. W. Kang, R. Ahuja, Band gap engineering by anion doping in the photocatalyst BiTaO4: First principle calculations. Int. J. Hyd. Ener., 37,3014–3018, (2012)

9. Samsudin E.M., Hamid S.B. Effect of band gap engineering in anionic–doped TiO2 photocatalyst. Appl. Sur. Sci. 391, 326–336 (2017).

10. Vitiello R.P., Macak J.M. A. Ghicov, H. Tsuchiya, L.F.P. Dick, P. Schmuki, N–Doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem. Commu. 8, 544–548 (2006).

11. Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y. Visible–Light Photocatalysis in Nitrogen–Doped Titanium Oxides, Science 293, 269–271 (2001).

12. Kosowska B., Mozia S., Morawski A., Grznil B., Janus M., Kalucki K. The preparation of TiO2–nitrogen doped by calcination of TiO2·xH2O under ammonia atmosphere for visible light photocatalysis. Sol. Energy Mater. Cells 88, 269–280 (2005).

13. Park Y., Kim W., Park H., Tachikawa T., Majima T., Choi W. Carbon–doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl. Catal B: Environ. 91, 355–364 (2009).

14. Hariharan D., Jegath A.Ch., Mayandi J., Nehrua L.C. Visible light active photocatalyst: hydrothermal green synthesized TiO2 NPs for degradation of picric acid. Mater. Lett., 222, 45–49 (2018).

15. Shaislamov U., Lee H.J. Facile synthesis of Ag/ZnO metal–semiconductor hierarchical photocatalyst nanostructures via the galvanic–potential–enhanced hydrothermal method. CrystEngComm, 20, 7492–7501 (2018).

16. Shaislamov U., Krishnamoorthy K., Kim S.J., Abidov A., Allabergenov B., Kim S., Choi S., Suresh R., Ahmed W.M., Lee H.J. Highly stable hierarchical p–CuO/ZnO nanorod/nanobranch photoelectrode for efficient solar energy conversion. Int. J. Hyd. Ener., 412253–2262 (2016).

17. Ruan C., Paulose M., Varghese O.K., Mor G.K., Grimes C.A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J. Phys. Chem. B109,15754–15759 (2005).

18. Shankar K., Bandara J., Paulose M., Wietasch H., Varghese O.K., Mor G.K., LaTempa T.J., Thelakkat M., Grimes C.A. Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor–antenna dye. Nano Lett.8,1654–1659 (2008).

19. Mor G.K., Varghese O.K., Paulose M., Shankar K., Grimes C.A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications.Sol. Energy Mater. Cells 90, 2011–2075 (2006).

20. Khan S.U.M., Akikusha J. Photoelectrochemical splitting of water at nanocrystalline n–Fe2O3 thin–film electrodes. J. Phys. Chem. B103, 7184–7189 (1999).

21. Shahed U.M., Sultana K.T. Photoresponse of n–TiO2 thin film and nanowire electrodes. Sol. Energy Mater. Cells 76 2, 211–221 (2003).

22. Akikusa J., Khan S.U.M., Photoelectrolysis of water to hydrogen in p–SiC/Pt and p–SiC/ n–TiO2 cells. Int. J. Hydrogen Energy27, 863–870 (2002).

23. Pankove J.I. Optical Process in Semiconductor, Chapter 3, Dover, New York (1971).

24. Kato H., Kudo A., Visible–light–response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium J. Phys. Chem. B 106, 5029–5034 (2002).

25. Ikeda T., Nomoto T., Eda K., Mizutani Y., Kato H., Kudo A., Onishi H. Photoinduced dynamics of TiO2 doped with Cr and Sb. J. Phys. Chem. C 112, 1167–1173 (2008).

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.